
^ELEGIE
^ OCT 1 6 1995 | 1

N00014-93-C-0213
FIFTH QUARTERLY REPORT

i FORMAL SYSTEMS DESIGN & DEVELOPMENT, INC.
P.O. BOX 3004

AUBURN, AL 36831-3004
(205) 887 9444

DISTRIBUTION STÄYSMHkr S f

Approved tax pTiölie rsiease? |

DTIC QUALITY niEPSCTSD 3

19951012 030

f
N00014-93-C-0213

FIFTH QUARTERLY REPORT

Table of Contents:

A The Fifth Quarterly Report 1

B Specification Languages for Reactive Sytems 7

C Models of the Fault Tolerant Processor and Verification [revised] 24

D Verifying Timing Properties of Static Schedulers 75

Accesion For

NTIS CRA&I
DTIC TAB
Unannounced
Justification

By
Distribution

M^

□
D

Avaiiabiiity Codes

Dist

A-J

Avail and/or
Special

MjFbrmalSystems

N00014-93-C-0213
Fifth Quarterly Progress Report

Michael Goldsmith
Formal Systems Design & Development, Inc.

April 25, 1995

Summary
This Document summarizes the progress to date in the Office of Naval Research SBIR
Project N00014-93-C-0213 Embedded Transputer-based System Design and indicates
the expected direction of the Research and Development in the following periods.

1 Overview

The level of effort expended was broadly on track during this period both at Formal Systems
and at the Charles Stark Draper Laboratory (Draper) and Formal Systems (Europe) Ltd.
Most of the slippage against plan reported last quarter had indeed been made up by the end
of January, although actual delivery of reports was not achieved at that time. There have
again been staff resource difficulties in the first quarter of 1995, with the result that some
slippage of Q6 and Q7 deliverables is anticipated. The original schedule had considerable
slack in the activities planned for Q8, to allow for just such an eventuality, so this should
not impact the scope of the work completed within the project.

The main areas of activity and achievement during this period were:

• Continued experimentation with FDR 2, in parallel with its continued development
by Formal Systems (Europe) Ltd, leading to appraisal and feedback into the design.

• Distillation of this experience into requirements for translation and interface tools,
both for increasing the facility of expression of real-time specifications, and for in-
creasing the range of implementation notations from which behaviors amenable to
analysis can be (semi-)automatically abstracted.

• Discussion with Draper and consequent revision of the models of scheduling and ar-
chitecture of the Transputer Fault-Tolerant Processor node.

• Acquisition of timing requirements for the demonstrator scheduler, based on potential
application systems.

• Preliminary investigations of routes to incorporate a limited degree of continuous
real-time analysis into the FDR 2 framework.

These are detailed in the following sections and the accompanying Deliverables.
The current status of Deliverables is summarized in Table 1.

Deliverable Due Status

D2.1 Detailed natural-language problem statement EndQl Delivered Q2

D2.2 Formalization of single-lane scheduling problem and
of fault tolerance requirements

EndQl Delivered Q31

Dl.l Initial requirements definition for real-time modeling
extensions to FDR

EndQ2 Delivered Q2

D2.3 Idealized (single-lane) scheduler model EndQ2 Delivered Q31

D2.4 Fault models and redundant scheduler correctness
criteria

End Q3 Delivered Q3

D1.2 Prototype software for discrete real-time extensions to
FDR
Initial process-algebraic solution and Draper appraisal

EndQ4 Delivered Q4

D2.5 EndQ4 Revised Q5
of scheduler models

D1.3 Prototype Software for Continuous Real-Time
Extensions to FDR

EndQ5 Deferred2

D1.4 Appraisal and Revised Requirements for Discrete
Real-Time Extensions to FDR

EndQ5 Expected Q6

D1.5 Translation and Interface Tools Requirements
Definition

EndQ5 Delivered Q5

D2.6 Timing Requirements Analysis for Scheduler EndQ5 Expected Q6

D1.6 Appraisal and Revised Requirements for Continuous
Real-Time Extensions to FDR

EndQ6 Deferred2

D1.7 Prototype Software for Translation and Interface
Tools

EndQ6 On schedule

D2.7 Initial Prototype Transputer/occam Implementation
and Verification of Conformance

EndQ6 Starting Q6

D1.8 Revised Code and Full Draft
Documentation/Justification of Tools

EndQ7 Not yet started

D2.8 Revised Prototype Transputer/occam Implementation
and Architectural Specification of Potential VLSI
Realizations

EndQ7 Not yet started

D1.9 Final Report on Theoretical and Software Tool
Developments

EndQ8 Not yet started

D2.9 Final Report and Appraisal of Fault-Tolerant
Scheduler Demonstrator

End Q8 Not yet started

Table 1: Deliverable schedule

Note 1: Deliverables D2.2 and D2.3 were consolidated into a single document.

Note 2: But see the discussion in §2.1 below.

2 Theory and Software Tools

The major goal of this project is to establish a viable route from specifications in Hoare's
Communicating Sequential Processes (CSP) [5] and its real-time variants [8, 3] to imple-
mentations of real-world, substantial real-time and/or fault-tolerant systems. The initial
concentration of effort under this head has been directed towards closing the gap between
the current real-time specification and hand-crafted verification available within Timed CSP,
on the one hand, and the available highly efficient mechanized verification and development
aid for untimed CSP systems which is presented by the Formal Systems (Europe) Ltd model
checking tool, FDR, and the new generation FDR 2.

The apparent tractability of the kind of problems arising from the Demonstrator Ap-
plication under the discrete modeling of time is such that we have been concentrating our
software development and experimentation on that approach for the present. We proposed
to defer the study of continuous real-time tools until later in the project; thus far this has
taken the form of a review of past approaches within the field, with an eye to their poten-
tial for adaptation to Timed CSP mechanization. An outline of the tentative conclusions
to date is given in the following section.

2.1 Model-checking continuous real-time processes

There are obviously fundamental difficulties in trying directly to model and model-check
continuous real-time systems. Even if the time domain is restricted to the rational numbers,
rather than the reals, the cardinalities involved in a straightforward encoding of the state-
space covering all possible evolutions of a system are intractably infinite.

There are two general classes of strategy that address this problem, both of which may
be necessary to achieve a practical mechanization of reasoning in this field:

• Restrictions on the expressive power of the real-time language;

• Identification of temporally "equivalent" configurations of the system, and calculation
modulo this equivalence.

The former technique is undoubtedly needed to some extent, since language inclusion for
unrestricted timed automata is formally undecidable. The latter deprives the analysis of
precise numerical data in the case of a counterexample, but does throw up the essential
behavior of each component relative to the critical timings in its peers.

Based on work by Dill [4] and Lewis [7] extending state-graphs with timing constraints in
a continuous model of time, Alur, Courcoubetis and Dill have studied the problem of model-
checking timed w-automata for langauge inclusion and against temporal logic formulae [2,1].
The principal language restriction, which is unlikely to be problematic in real examples,
is that the system should compare each of its finite number of clocks only with integer
constants, and that the only discontinuities in their evolution should be "reset" events
restarting one or more from zero. They observe that, in a finitely expressed system, there
is a bound (Kc, say) on the values with which each clock c can be compared, so that the
integer part of a clock's state can be modeled by a value drawn from {0,..., Kc, Kc+1},

where "incrementing" the largest value leaves it unchanged. For the fractional part of
the clocks, the only effects that might be detected from the untimed observation of state
transitions are those due to the relative order (or synchrony) of crossing integer boundaries;
adequate timestamping can therefore be abstracted by observing which clocks have most
recently "ticked". Thus the significant timing information can be encoded as the product
of the \KC+1) terms and the number of ordered partitions of the clocks; while potentially
very large, this factor need not be prohibitive of mechanized exploration.

Jackson's doctoral work [6] presents a finitized dialect of Timed CSP, which exhibits the
same properties. We have been giving some thought to how these notions can be imple-
mented within the FDR framework, as the most promising approach to adding continuous
time to this work.

3 Demonstrator Application

The demonstrator application is to be a verified real-time fault-tolerant scheduler, for a
machine such as the Draper Transputer Fault-Tolerant Processor (TFTP).

Significant features of recent developments include:

• Decision to target existing TFTP hardware; this was always the probable outcome,
but the availability and practicality of using the Draper hardware has been checked
out.

• Characterization of control system to schedule, incorporating and refining assumptions
set out in D2.1 and scoping the problem within available resource;

o Hard Real-Time problem, with well defined data dependencies;

o Real-world application, not dummy tasks;

o Not more than tens of tasks;

o Not requiring implementation of complex simulation environment interface;

o Iteration rate within real-time performance (unsealed) of hardware.

At a meeting in early February, a shortlist of six applications was drawn up, with
a final decision (based in part on technical criteria, and in part on availability and
support of original development projects) in the following quarter.

• A more precise formulation of the Byzantine agreement property, and validation of
the architecture against it.

• Demonstrative application of the verification techniques previously applied to system
level properties to the single-node timing proof obligations of the form generated by
that higher-level analysis.

As promised, comments have been solicited from Draper on D2.5 and their feedback has
been incorporated in a revised version of the document, which accompanies this report.

4 Accompanying Documents

The following documents accompany this report.

• Deliverable D1.5, in the form of a paper entitled Specification Languages for Reac-
tive Systems. This introduces a range of notations suitable for describing real-time
specifications and, more generally, real-time reactive systems. Topics covered include:

o Regular expressions;

o Temporal logics;
o The modal /^-calculus;
o The duration calculus;

o Davies' approach;
o Tabular approaches;

o Timed CSP.

This last gives an embedding of the operational semantics for a finitization of TCSP
into the discrete "tock" model we have been using so far.

• Revised Deliverable D2.5, updated in the light of feedback from Draper.

• Verifying Timing Properties of Static Schedulers, a paper which expands the ideas
of Working Paper W2.2.1, and provides motivating arguments for the forthcoming
Deliverables D1.4 and D2.6.

References

[1] R. Alur, C. Courcoubetis, and D.L. Dill. Model-checking for real-time systems. In
Proceedings Symposium on Logic in Computer Science, pages 414-425, 1990.

[2] Rajeev Alur and D.L. Dill. Automata for Modeling Real-Time Systems. In Proceedings
of 17th ICALP, 1990.

[3] J. Davies. Specification and Proof in Real-Time Systems. Programming Research Group
Technical Monograph PRG-93, Oxford University Computing Laboratory, Oxford, Eng-
land, 1991.

[4] D.L. Dill. Timing assumptions and verification of finite-state concurrent systems. In
Automatic Verification Methods for Finite-State Systems, Lecture Notes in Computer
Science 407. Springer-Verlag, 1989.

[5] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall International, En-
glewood Cliffs, New Jersey, 1985.

[6] D. M. Jackson. Logical verification of reactive software systems. D.Phil., Oxford Uni-
versity, 1992.

[7] H.R. Lewis. Finite-state analysis of asynchronous circuits with bounded temporal un-
certainty. Technical Report TR-15-89, Harvard University, 1989.

[8] G.M. Reed and A.W. Roscoe. A timed model for communicating sequential processes. In
Proceedings of ICALP'86, LNCS 226. Springer-Verlag, 1986. Also appears in Theoretical
Computer Science 58 (1988) 249-261.

This is Release 1.0 of this document, last modified by Michael Goldsmith at 20:36:03 GMT on April 25,
1995.

TlfFbrmalSystems

Specification Languages for Reactive Systems

David Jackson
Formal Systems Design & Development, Inc.

April 25, 1995

Summary

This document discusses possible additional specification and description
methods to be integrated into the FDR system. The methods are chosen
and discussed with particular relevance to real-time description in general and
scheduling properties like those in [9] in particular.

We conclude with a list of required support, including suggested priorities
for those to be addressed in the short term.

1 Overview

Each of the following sections discusses a method, or family of methods, which could
be used to describe models or propeties of reactive systems. A wide variety of mech-
anisms is covered, and although all are amenable to formal description, they express
a range of features and have differing needs and applications, so that we should defi-
nitely consider them as complementary, rather than exclusive.

As the desire to express properties in a more abstract form than CSP programs has
been raised by a number of external agencies, we first consider methods for describing
abstract constraints on behavior.

2 Regular Expressions

If we consider the whole range of computer application, possibly the greatest use of
formal property expressions is to describe sequences or patterns for matching and

This is Deliverable D1.5 in the Office of Naval Research SBIR Project N00014-93-C-0213 Embedded
Transputer-based System Design.

searching1. We might therefore hope to be able to take advantage of a common and
unambiguous formalism taken from this area to provide an intuitive way of describing
sequences of actions. This section considers using the language of regular expressions
(regexps) to place constraints on CSP processes. Instead of matching a string or
sequence of characters to a pattern, we compare a sequence of events (a trace) to a
pattern expressed in terms of individual actions.

While the expressive power of regular expressions is limited, and there is no formal
expressive gain over the traces model of CSP, the wide acceptability of regexps would
make them an ideal engineering framework. The fact that regexps are expressible in
CSP should actually greatly simplify their implementation: we may translate them
into CSP process descriptions, and take advantage of the fact that the standard
reduction of nondeterministic (e-move) automata to determinsitic automata often
used in the compilation of regexps is, in fact, a special case of CSP normalization.

A language of regular expressions for sequential behavior specifications should
include at least the operations usually supported by pattern matching facilities:

Sequencing A B which represents a behavior matching A followed by one matching
B.

Alternatives A I B representing behaviors which match either A or B.

Grouping using parentheses ().

Optional elements such as A? which matches either A or the null behavior.

Repetition either A* representing a behavior consisting of zero or more behaviors
matching A, or A+ where at least one repetition must occur.

A useful extension would be

Numbered Repetition perhaps written n{A}m where n and m are numbers which
bound the number of repeated behaviors (each matching A) which constitute a
behavior matching the compond regular expression.

One area where behavioral descriptions may need to differ slightly from textual ap-
plications is the specification of individual actions (corresponding to the characters
in a text expression). The language should at least include

• Explicit event names

• Partially specified events (perhaps naming the channel while leaving the actual
data unidentified

• Completely unspecified events (the equivalent of . in text expressions).

1 Almost any word-processor includes such a feature!

The description of partially specified events will require careful consideration: the .
symbol is conventionally used in CSP as a field separator, and in regular expressions
as a "wildcard". It may be necessary to introduce an alternative wildcard symbol
which can be combined with explicit event and data symbols using . in its CSP sense:

in.ANY.1
ANY
out.ANY.ANY

The underscore symbol _ might provide a suitable shorthand for ANY. We might also
hope to provide a short-hand description for ranges of similar items analogous to
classes of characters in text, perhaps in the following form

in.[0-3].[7-10]

Perhaps the most useful extension, however, would be support for the use of
some free variables in regular expressions, to allow formal interpretation of common
informal descriptions like

(in.X:{0..9} out!X)*

In the expression, of course, the usual intuitive interpretation is that the first X binds
to a specific value, and the second refers to this. A possible alternative might be to
permit a form of indexed choice: we could then write

(I X:0-9 ® in.X out.X)*

2.1 Safety properties

Actually exploiting regexps as a specification language seems possible in two distinct
(and complementary) ways: we may either make positive assertions about the set of
traces permitted, or we may identify specific patterns of behavior to be prohibited.

In the former case, we can restrict ourselves to a single regular expression and
use the choice operations (I) to combine distinct options. We may also wish to
ensure (perhaps simply by interpreting the expression appropriately) that any prefix
of a permitted trace is itself permitted; it is certainly necessary for any satisfiable
specfication to allow the empty trace.

The use of regular expressions to prohibit behavior patterns requires fewer restric-
tions, although we should still be aware that the empty trace must not be prohibited
by any satisfiable specification. In this case, however, there are greater arguments for
demanding that a number of separate constraints can be simulataneously imposed, as
there is no straightforward operation in the usual regular expression languages which
captures intersection in the way that I represents union. A variation of the latter case
would allow regexps to describe system states, and then permit the user to specify

events which should not be permitted in particular states. This is a trivial variant of
the second class of specifications above and may not be worth implementing directly.

In either case it is desirable to provide a means of limiting descriptions to part
of a system's interface. Semantically, this should be equivalent to abstracting from
other events, ideally by considering the regular expression specification interleaved
with RUN (in the traces model) or CHAOS (in the failures-diveregences model) on
the rest of the alphabet. Hiding irrelevant events is a less satisfactory means of
abstraction as it may introduce divergence.

A more general solution would be to provide an interleaving operator in the lan-
guage of expressions which could be used to perform this abstraction explicitly. This
would allow the user greater freedom in choosing the patterns of abstraction, but
because it is requires explicitly describing the irrelevant events, it is potentially some-
what cumbersome and confusing, so should perhaps be considered at best an alter-
native to a simpler scheme.

2.2 Liveness specifications

While simple regular expressions are sufficient to express safety properties, they do
not allow us to specify which events must be possible. Perhaps the simplest way of
achieving a more expressive language to allow specific refusal information, perhaps in
the form of a set of events which cannot be refused, with a regular expression which
determines when the condition should apply. For example we might specify a buffer
as follows:

(in.X out.X)* OFFER in.ANY

(in.X, out.X)* in.Y OFFER out.Y

Note that this latter case complicates the variable scoping rules, and we need a way
of specifying wildcard events in sets as well as in regexps.

If only simple assertions of this form are permitted, it should be possible to check
such constraints independently. Again, however, we must provide a means of specify-
ing which parts of a system's interface are to be constrained by a particular condition.

We should consider enriching the language of offers: conjunction and disjunction
are clearly desirable, but existential and universal quantifiers might be more useful,
and would permit an alternative (slightly weaker) buffer specification:

(in.X, out.X)* OFFER ALL X Q in.X
(in.X, out.X)* (in.Y) OFFER SOME X 0 out.X

10

2.3 Use in other contexts

In addition to the simple uses outlined here, regular expressions over traces do appear
to capture many of the usual interpretations of "states" which are used in other formal
specification languages. For example in the one place buffer we might use the regexp

(in.X out.X)*

to characterize the "empty" state, and

(in.X out.X)* in.Y

to charaterize "full" or "contains Y". A possible use of such state characterizations
is in the duration calculus discussed in Section 5 below.

3 Temporal Logic

A wide variety of logic languages enhanced by temporal operators have been proposed.
Techniques for verifying that assertions made in many of these languages hold of a
range of classes of finite state machines and automata have also been widely studied.
The difficulty in adopting such temporal logics for CSP specification lies in identifying
a particular language which is practically applicable and consistent with the theory
of CSP [8].

The larger proportion of work on applications of temporal logic to computing ap-
plications has concerned logics which refer to specific points in time. (A specification
language based on a logic of intervals is discussed in § 5.) Within these point-based
logics, two possible views of time are common:

• Branching time logics treat the space of all possible instants as a tree so that an
instant may lead to many possible future paths, but has a single past history.
This branching may be used to represent the resolution of choices as a process
evolves.

• Linear time logics view the set of all instants as a total order: each instant has
a single past and future ordering. In this scheme any given evolution follows a
single path, but a process may be seen to behave in a variety of ways.

The most widely used branching-time temporal logic is CTL, developed by Clarke
et al ([1], for example). Efficient algorithms have been developed for testing if finite-
state machines satisfy CTL formulae, and the SMV model-checker has established a
de-facto standard for machine-readable CTL.

The basic language of CTL couples temporal operators, such as o ("eventually")
and □ ("forever") with quantifiers specifying how these relate to future paths. For
example

11

Formula Meaning

V Ucj) (f> holds forever along all future paths
3 D(j) (f> holds forever along some future path
Vo(/> Along all future paths, (f> eventually holds
3 o4> 4> eventually holds along some future path

It should be noted that some CTL operators, particularly 3 o, allow us to assert that
particular behaviors are possible for a system. If we consider giving meaning to such
formulae in CSP, these existential specifications will assert the presence of a partic-
ular element or elements in the set of possible observations. Such specifications are
inherently non-monotonic with respect to the refinement relation C and consequently
cannot be easily used in the style of development and verification by refinement which
motivates FDR. (In fact, these specifications may be non-constructive and thus dif-
ficult to esablish of a CSP process by any means.)

Linear time temporal logics take a somewhat different view of satisfaction and,
like CSP sat specifications, typically insist that all possible behaviors meet a spec-
ified formula. The absence of alternative paths simplifies the form of the temporal
operators, resulting in specifications like the following, for example,

D(a => ob)

which states that any a is eventually followed by a b.
The major difference between the usual style of specification in CSP and linear-

time temporal logics lies in their treatment of infinite behavior. Temporal logic for-
mulae are usually interpreted over complete views of a behavior, and the models
of computation used with them assume that a process has control over its future
behavior. It is thus possible to claim that a system can satisfy a specification like

oa

which asserts that a must occur eventually in any execution. The future behavior
of a CSP process, however, depends on its interaction with the environment, and
thus eventuality conditions must depend on assumptions about the environment's
behavior. A further technical difference lies in that fact that most CSP models refer
to only the finite behaviors of a process, and assume that infinite behaviors will simply
be the limit of these. Temporal logic models, however, may specifically incorporate
notions of fairness which influence only infinite behavior. A common consequence of
this is that a CSP process can often only be proved to satisfy an eventuality property
when it in fact satisfies a stonger condition (e.g. it may be true that eventually event
b becomes available after each a, but this may be a trivial consequence of making b
available as the next event after each a). For a position on fairness which matches
that characterized by CSP, see [3]. Some linear-time temporal logics which attempt
to avoid these problems by introducing axiomatizations of the properties of CSP
behaviors are presented in [8].

12

4 The Modal //-calculus

A related logic language which has attractions as a specification formalism for com-
munication and evolution is the modal //-calculus used by Milner, Stirling, et al.
Like temporal logics, the //-calculus uses conventional logical operators enriched with
modalities which in this case take the forms

Formula Meaning
[a](j) After any a transition, (f) holds
(a)(j) An a transition is possible after which 4> holds

The language also includes fixed-point operators:

Formula Meaning
uZ.4>(Z) The weakest condition such that Z =*> 4>{Z)
// Z.<j){Z) The strongest condition such that 4>{Z) =>• Z

Additional modal operators can be defined using sets of events (e.g. after any event
in set A, <\> holds), and modal operators which ignore internal actions can also defined
in terms of fixed-points.

An attractive property of the //-calculus is that the majority of the common tem-
poral logic operators can be encoded in it, and that it is sufficiently expressive to
capture virtually all common types of properties directly (including safety, liveness
and fairness). It also refers to transitions between states in a similar manner to CSP,
and makes similar distinctions between visible and invisible actions. Its expressive
power does itself raise some complications, however. Like branching-time temporal
logics, //-calculus specifications can make many more distinctions between processes
that the theories of CSP on which FDR is based, including properties which are not
preserved by refinement. We should expect to restrict ourselves to particular classes
of formulae if we are to make optimal use of both the expressiveness of such a logical
language and the power of asbtraction inherent in CSP.

5 Duration calculus

The duration calculus [12] is based on an alternative temporal logic which treats
intervals, rather than points, as the basic concept (see, for example, [10]). It also
provides an interpretation of properties which allows the total time for which they
are true within an interval to be measured. Its intention is to provide a means of
formalizing the types of property which are expressed in engineering data books by
timing diagrams.

For example, the length of an interval could be expressed as the duration of the
predicate true, written / true. Then to claim that a condition Leak holds for no more

13

than one minute in every hour, we might use the predicate

[/ true ^ 3600 =► / Leak ^ 60)

The principle temporal operator in the duration calculus is the "chop" operator ;.
The formula p ; q holds of an interval if there is some division into two adjacent
intervals such that the first satisfies p and the second satisfies q.

A practical application of the calculus to CSP specification might would need
two elements: the temporal element (including the usual propositional connectives)
and some means of describing states (such as Leak above). The state descriptions
should probably be based on the trace of visible events. We should probably ulti-
mately allow both the identification of states with particular patterns (such as the
regular expressions of Section 2) and with simple assertions about the values recently
communicated on channels. The lack of a clearly satisfactory interpretation of state
variables is currently a notable restriction on its use in conjunction with CSP.

This is a greater issue in interval-based than in point-based temporal logic because
the occurrence of an instantaneous atomic communication cannot sensibly be given
a duration, while such events can clearly be incorporated into a point-based logic.

Overall, the duration calculus probably offers a useful expressive power in the
longer term, but its use in practice is insufficiently established to permit extensive
development at this stage. It is worth noting, however, that a mechanical approach to
testing the validity of duration calculus assertions has been proposed by Skakkebaek
and Sestoft [11], and that this technique uses a translation into regular expressions
of the sort described above, placing further emphasis on the importance of that tech-
nology.

6 Davies-style Macros

One approach which has been proposed specifically for specifications using the Timed
CSP model is "macro" language for Timed-Failure specification proposed by Davies
in [2]. In essence, this language is a first-order prodicate logic with variables ranging
over time values. Assertions may be made about the availability or occurrence of
events at specified times:

Formula Meaning
a at t Event a is observed at time t

a from t Event a is available from time t until it
occurs

a from t until t' Event a is available from time t until it
occurs or time t' is reached

a from t until b Event a is available from time t until either
a or b occurs

14

These expressions can be extended to allow non-determinism by permitting sets of
events or times to be specified. To support concise specification of processes involving
the hiding operator, Davies also defines an "active" predicate which asserts that the
environment never prevents actions on a given channel. The language can be extended
to include functions on the sequences of actions performed during specified intervals,
including, for example,

• the sequence of data on a specific channel,

• the number of occurrences of events in a given set, and,

• the time of the last occurrence of an event in an interval.

An example of this style of specification can be found in [5, Section 7].
Using a general predicate logic as the underlying logical framework gives Davies

specification style a great deal of expressive power, but does not lead easily to me-
chanical verification. Perhaps the most attractive approch is to consider properties of
behaviors expressed in the style as the "state" formulae in a temporal or modal lan-
guage. For example, a valve controlled by open and close events may be characterized
by two states expressed as predicates on the timed trace s:

Open = last (s \ {open, close}) = open

Shut = last (s \ {open, close}) ^ open

We might then insist that over any 10 minute period the value was shut more often
than it was open by a duration-calculus style formula:

n(£ ^ 600 =► / Shut ^ / Open)

Based on the standard models of Timed CSP, this approach conventionally makes
reference to refusal (i.e. liveness) information throughout the whole evolution of a
process. Although the current mappings of timed analysis into the untimed domain
do not entirely match this model, the prioritization operator of [4] does allow us to
express similar properties to those which would be expressed in Timed CSP by a
refusal predicate. To express the notion that an event a always occurs when offered
by a process in Timed CSP, we take as an hypothesis that the event is active: a
is perceived (by the environment) to be refused at all times. A similar concept can
be encoded in a prioritized model of untimed CSP by giving a a high priority: time
(represented by a lower priority event) will only pass when a cannot occur. We should
also note that stable refusals may be constrained in a similar manner in both Timed
and untimed CSP: in both frameworks we may insist, for example, that a is possible
following a b event by claiming that when the latest event is b, a should not be stably
refused. Because TCSP behavior sets are prefix-closed, this is sufficient to guarantee
that a is available at appropriate times throughout an execution, even though our
untimed assertion considers only behaviors ending in b.

15

7 Tabulated Functions

The preceding sections have discussed a variety of methods of describign specific
properties of systems. The next two describe some description techniques which
experience on this project have indicated would be useful in describing the models
rather than their properties.

One of the most potentially useful vehicles for requirements capture does not
address the definitions of processes or models at all, but simply reduces the effort
required to create and maintain models: the ability to capture tabulated or structured
data easily is a great asset.

We require two features of a data capture facility:

• It should take input in a standard form or forms, e.g. from a common spread-
sheet format, and

• The captured information should be easily accessible within a model

The choice of preferred data source is in fact relatively straightforward: apart from
propietary formats, spread-sheet packages share few common interchange formats, of
which the Comma Separated Value (CSV) form is most popular. We propose that
FDR be extended to allow CSV files to be used to define model parameters.

Providing an interface to this data within a model requires further clarification,
however. Perhaps the cleanest form of integration would be to allow function defini-
tions to be tabulated:

pragma tabulated f, g

P(x) = a ! f(x) -> Q(g(x))

The pragma declaration must include the name of the function, and possibly also

• the name of the file containing the definition,

• the number and type of the arguments to the function, and,

• the type of the result.

As well as simple evaluation of functions, the CSP interface to a data table should
include some way of determining the domain of a tabulated function, both as a true
set and also as a sequence which reflects the order in the original source. These
simple facilities would be sufficient to support practical applications such as allowing
the Engine Management System model of [9] to be maintained by engineers without
detailed knowledge of CSP.

To facilitate this type of usage, the FDR facility should permit

16

• Functions of up to at least three arguments

• Multiple functions denned over the same domain in a single table

• Interrogation of a functions domain as a set and a sequence

A further development would be to allow additional information to be included
in a spread-sheet format, including, say, definition files to be loaded and checks to
be performed. This would allow a suitably configured FDR model to be operated
entirely from a non-CSP data source.

7.1 State transition tables
A natural side effect of providing this facility (which could perhaps be further ex-
ploited by providing a suitable library function) allows state machines to be con-
structed from state-tables in a fairly simple manner. If we define a function next (in, curr)
which relates input events and current state values to successor states, the simple CSP
process

PCs) = [] x : alphaP 0 x -> P(next(x,c))

provides an animation of the state machine defined by next. This trivial model can of
course be extended to restrict permitted inputs and to allow outputs to be generated
in the usual Moore machine style, as in the following example which uses the following
functions

inputs (s) Returns the set of inputs expected in state s

outputs (s) Returns the set of outputs possible in state s

next(s.v) Defines the state reached from s when v is communicated.

PCs) = CD x : inputsCs) @ x -> PCnextCs.x)))

CI~I y : outputsCs) 8 y -> P(next(s,y)))

The transition function next can be expressed as a function of two variables, either
in a simple tabular form:

Current Input Next

1 a 2
1 b 3
1 c 4
2 b 1
2 c 6

17

or as a two-dimensional grid:

Input
Current a b c

1 2 3 4
2 1 6

In wider use, it would be desirable to allow a wider range of constructs to provide fuller
support for state variables and channel values. One approach would be to allow a set
of variables to be defined for each state-transition table. These could be referenced
in the column headings of a state transition matrix by the ? and ! notation:

TABLE copy
VARIABLE x
INITIALLY empty
TRANSITIONS

, in ? x , out ! x
empty , full ,
full , , empty

(Either numbers, or preferrably, symbolic names could be used in the vertical axis of
such a table as state identifiers).

An alternative scheme (but one which is possibly over complex) is to associate
variables with states. In defining the "next" function, event labels with ? then bind
that name in the successor state, event labels containing ! use the value in the current
state.

in ? x out ! x

empty full(x)
full(x) empty

The direct translation from either of these forms of table to CSP is straightforward.

8 Timed CSP
Given our work on discrete time, an obvious enhancement to the modelling capabil-
ities of FDR is to extend the input language to support Timed CSP and allow its
translation to a clocked process.

The additional operators which need to be supported are

WAIT t Delay

18

a —> P Timed prefixing

P i{i\ Q Timed interrupt

P >{t] Q Time-out choice

In addition, fuller support for the untimed CSP interrupt operators is desirable, in-
cluding

P A Q General interrupt

Support for older, less general, interrupt operators would be advantageous, and could
be provided by syntactic transformation:

P V Q Event-triggered interrupt
a

P V Q = P A a-> <?
a

intr(a, P) Resetting interrupt,

intr(a, P) - /x X.P A a -* X

The required semantics of the simpler processes in a discrete time framework are
quite clear; we suggest the following, where x 1S the distinguished event which repre-
sents the passage of a unit of time, and JPJ represents the discrete-time translation
of P.

{WAITtj = if * = 0 then SKIP else X -> \WAIT{t - 1)\

[o-^P] = WAITING(a,t,P)

WAITING{a, t,P) = x^ WAITING(a, t, P)
D

a-> \WAITt\\P

P^P'
[a^x]

PHt}Q^P'Ht}Q

 [t>0]
P l{t}Q±P> i{t-l}Q

19

Pi{0}Q^Q

P^P'

P>{t} Q^P'>{t} Q

P >{t} Q A P'

P A P<

[^{X,r}}

P>{t}Q±P'>{t-l}Q
[t>0]

P>{0} Q A Q

For the interrupt operator:

P A Q A P' A Q
a £ initials(Q)

PAQ^Q'
[a^r]

P A Q A P A Q'

Practically, there are two possible approaches to integrating these operators with
untimed CSP: we might construct separate definitions in a purely timed language and
provide a global translation, but it seems perhaps preferable to allow a mixture of
processes definitions using the above operators (where timing information is implicit
in the syntax) and untimed processes, or at least processes in which the timing events
are explicit. In adopting the latter course, it will be necessary

• to ensure that the semantics of untimed processes are consistent with the stan-
dard models, or at least can be made to be so by user-selectable option.

9 to allow the additional features to be disabled in such a way as to prevent
accidental usage in conventional CSP scripts

A fuller interface to prioritized checks, and other functions or operators particu-
larly useful in a timed context is obviously necessary in the longer term.

20

9 Quantitative Results

Reference [9] shows that numerical information may be extracted from CSP models
by including families of additional transitions and recording those which are actually
enabled in reachable states of the combined specification and implementation ma-
chines. While this approach is still in the early phases of development, we may at
least consider how a more mature technology could be integrated into our system.
One possibity is to introduce annotations into the CSP model of a specification which
make assignments to measured parameters when specific transitions are taken. For
example

Deadline(x) = tock -> Deadline(x-1) [] done {margin := x} -> Reset

An alternative approach could associate parameters with the states such as x in
Deadline (x) above.

10 Summary: Required Functionality

We propose that the following extensions to FDR be provided in the short term:

• Tabulated functions and simple state-transition tables

• Regular expression descriptions of safety properties

• Discrete-time interpretations of TCSP operators

That within the life of the current project, the functionality should be extended to
include:

• Regular expression descriptions of liveness properties

• Support for a modal- or temporal- logic (perhaps the Duration Calculus) by
property checking in some form, at least covering safety properties,

and that the following specification formalisms are considered for longer term support:

• timing specific specification languages in the Davies style, possibly coupled with

• fuller support for temporal logic property descriptions

21

References

[i

[2]

[4]

[5]

[7]

[8]

[9]

[10]

[11]

E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite
state concurrent systems using temporal logic specifications. ACM Transactions
on Programming languages and Systems, 8(2):244-263, 1986.

J. Davies. Specification and Proof in Real-Time Systems. Programming Research
Group Technical Monograph PRG-93, Oxford University Computing Labora-
tory, Oxford, England, 1991.

E.W. Dijkstra. Position paper on "fairness".
13(2): 18-20, April 1988.

Software Engineering Notes,

M.H. Goldsmith. A CSP Priority Operator for FDR 2; Prototype Software for
Discrete Real-time Extensions to FDR. Technical report, Formal Systems Design
& Development, Inc., 1994. Deliverable to SBIR N00014-93-C-0213, in [6].

M.H. Goldsmith. Embedded transputer-based system design: Final report. Re-
port on ONR SBIR contract N00014-91-C-0054, Formal Systems Design and
Development, Inc., P.O. Box 3004, Auburn, AL 36831-3004, 1995.

M.H. Goldsmith et al. N00014-93-C-0213: Fourth Quarterly Report. Technical
report, Formal Systems Design and Development, Inc., P.O. Box 3004, Auburn,
AL 36831-3004, 1994.

M.H. Goldsmith et al. N00014-93-C-0213: Fifth Quarterly Report. Technical
report, Formal Systems Design and Development, Inc., P.O. Box 3004, Auburn,
AL 36831-3004, 1995.

D. M. Jackson. Logical verification of reactive software systems. D.Phil., Oxford
University, 1992.

David M. Jackson. Verifying Timing Properties of Static Schedulers. Technical
report, Formal Systems Design & Development, Inc., 1995. Deliverable to SBIR
N00014-93-C-0213, in [7].

B. Moszkowski. Executing Temporal Logic Programs. Cambridge University
Press, The Pitt Building, Trumpington St, Cambridge, UK, 1986.

J. U. Skakkebaek and P. Sestoft. Checking validity of duration calculus formulas.
ESPRIT BRA 7071 (ProCoS) Project Report [ID/DTH JUS 3/1], Technical
University of Denmark, 1994. Available as ftp: //ftp. id. dth. dk/pub/ProCoS/
Jens.U.Skakkebaek/IDDTH-JUS-3-1.ps.Z.

22

[12] Zhou ChaoChen, C.A.R. Hoare, and A.P. Ravn. A calculus of durations. Tech-
nical Report OU ZCC2, ESPRIT ProCoS project, 1991.

This is Release 2.0 of this document, last modified by Michael Goldsmith at 20:34:42 GMT on April
25, 1995.

23

mForiiialSvstems

Models of the Fault-Tolerant Processor
Architecture and Verification

David Jackson
Richard Chapman

April 25, 1995

Summary

This document describes our work to date on formalizing the design and
analysis of the Transputer Fault-Tolerant Processor system. The early sections
summarize the fault-tolerance properties which we intend to verify, our model
and a simple demonstration that the architecture does meet our requirement
for Byzantine fault-tolerance. We then describe how such verification can be
simplified if we exploit the symmetry both the overall design, and of the be-
havior of its components. The next section describes how we can relate these
models of network behavior to the application level scheduling problem, and
in particular how we can exploit temporal redundancy to tolerate transient
faults. It includes discussions on voting, permuted schedules and on transient
recovery techniques. Abstract models of task execution and voting are given
which, despite their simplicity, provide a framework for future models of spe-
cific scheduling policies. We include two more detailed models of the system
which analyse a distributed model of the system using synchronous and partly
asynchronous models.

This is a revised Deliverable D2.5 in the ONR SBIR project N00014-93-C-0213 Embedded
Transputer-based System Design.

Contents

1 Fault-Tolerant Behavior 25
1.1 Classes of Fault-Tolerance 25
1.2 Fault models 26

2 High-level Architecture 27
2.1 Implementing the Oral Messages algorithm 28

3 Tolerance of Byzantine Faults 29

4 Refining the Architecture 38
4.1 Exploiting Symmetry 38
4.2 Verifying the Agreement Property 41

5 Fault-management & Application Programs 46
5.1 Permuted scheduling 46

5.1.1 Validity of Permutation 46
5.1.2 Permitted Permutations . 50

5.2 Voting in permuted schedules 51

6 Distributed Models of a Voter 53

7 Recovery from transient errors 66
7.0.1 A fully-voted reversionary schedule 67
7.0.2 A single reversionary schedule 68
7.0.3 Partial reversionary schedules 68

8 Conclusions 69

A Vector-based Model for Permuted Scheduling 72

1 Fault-Tolerant Behavior

We begin by summarizing the types of behavior which we ultimately intend to analyse
in order to show how they can be expressed in terms of the models we will describe
below.

1.1 Classes of Fault-Tolerance

The first class of faults we will consider, and the errors they may cause are, those
outlined in a previous project document, [2]. These are the Byzantine failures of

25

a system element, after which no assumptions can be made about the behavior of
the component. In particular, such faults may not be manifest - failure may not be
obvious to those parts of the system with which the failed element interacts. It is
well-established that a suitably redundant system can tolerate Byzantine failures, but
that the cost of such a system is higher (i.e. it requires greater redundancy) than a
system designed to tolerate manifest faults (see, for example, [10]).

We can exploit this redundancy, however, to improve tolerance to other types of
fault. Of particular importance are "common-mode" errors which arise in a number
of replicated elements simultaneously, perhaps as the result of some environmental
factor. Where these errors arise from transient faults (such as corruption of semi-
conductor memory) we can use temporal redundancy to allow correct operation to be
resumed even if the number of elements affected is much greater than the number
of Byzantine failures that a system might tolerate. This strategy has again been
outlined in a previous project report [1].

Obviously these two situations are far from being an exhaustive catalogue of fault
situations which we might design a system to tolerate but they do represent a pos-
sible extremes: in the Byzantine case we suffer complete non-manifest failure of few
components, in the transient case we tolerate identifiable temporary faults in many.
Other combinations, such as manifest permanent faults, may be included in later
analysis.

1.2 Fault models
Modeling a component capable of Byzantine failure is relatively straight-forward,
because we need to satisfy very few constraints on behavior after an error, but we
must nevertheless take into account the features that our model represents if we are
to provide a satisfactory model.

High level abstractions In models at the highest level of abstraction (the repli-
cated synchronous view of [2]), a failed component can be represented as ignoring
all inputs. We choose to ignore, rather than to refuse, inputs in order to remove the
need to model details of the error detection and buffering which is used in practice
to implement communication between distributed components. These communica-
tion elements are, of course, modeled in the lower level abstractions (Section 6 of
this report). Abstracting from the implementation of the communication and error
detection mechanism also influences the way we should model outputs from a faulty
system element. The most obvious approach is to allow arbitrary generation or refusal
of output events. This correctly captures the idea that a failed component exhibits
the most general possible behavior but does not reflect the ability of a receiver to
detect when outputs are being refused (typically by means of a time-out). We there-
fore model a faulty output as a combination of arbitrary valid outputs together with

26

a distinguished error value which is always potentially available. While placing con-
straints on faulty behavior may appear unrealistic, it should be remembered that our
fault model is actually also incorporating a significant amount of information about
the ability of connected components to detect faults. We will make this information
more explicit in later sections, but this abstract model will remain useful because it
does not make assumptions about how communication errors are detected, and thus
applies to a wide range of possible error detection techniques, including time-outs,
parity or check-sum errors or more complex protocols.

Lower level abstractions In more detailed models the models of faulty compo-
nents actually become simpler, because we are able to model more faithfully the way
in which errors are detected by the remainder of the system. Both input and output
behavior of a process after the occurrence of a Byzantine fault can be assumed to be
entirely arbitrary: both inputs and outputs can be performed in any order, or refused
at any stage. This is exactly the behavior of the CHAOS process of CSP, as we
might expect of a completely undetermined behavior.

By their very nature, transient faults require a more detailed model of the internal
state of a system than Byzantine failure. The essence of our approach will be to
decompose the application calculations into a series of tasks each of which calculates
new values for part of the system state (and may produce outputs) from the previous
system state and any inputs present. A transient fault is modeled by assuming that
the fault corrupts some part of the processor's state arbitrarily, and that all tasks
depending on that part of the state may in turn corrupt their outputs and final
states. The task of the fault management system is to identify the corrupted parts
of the system state and re-generate it where possible. Adding sufficient information
to our high-level model to support this reasoning is discussed in Section 4 and later
sections.

2 High-level Architecture

For practical applications, we will assume that tolerance of a single Byzantine fault
is sufficient, and thus we will concentrate on quad-redundant systems. Each of the
four redundant fault-containment regions (FCRs) which make up such a system must
execute both the application tasks and the functions related to fault management:
in our demonstrator application each FCR will typically contain two processors, one
executing the application and another managing communication and input-output.
This bipartite view is also applicable to single processor systems built using Trans-
puter hardware, as separation between processing and communication is present even
if the components are actually a CPU and a link engine on a single IC.

27

\

Application

k. J

■«-»

r \

Comms Unit

1

/ \ /

i ' \

Application

J

*-» Comms Unit

J

*

1

h ;

i' \

Application

>

- Comms Unit
«

1

, t j

\ ' >

Application *-»■ Comms Unit
■e

V J

Figure 1: Communication between peers

2.1 Implementing the Oral Messages algorithm

As discussed in [2], we will use the Oral Message (OM) algorithm to establish con-
sensus values for data in the presence of faults. Each FCR will communicate its local
values for state and output data to its peers, and vote upon a derived value using
its local data and the values it receives in return. The communication will have the
pattern shown in Figure 1. Each node in Figure 1 represents the communications
processing element of an FCR. Data is received from the application along the in
channel and passed out along the cross channels (the vertical links in the diagram).
Values received, along with the original value received, are combined by a majority
voting process and the result is passed to the application or the environment.

28

Figure 2: High-level Model Architecture

3 Tolerance of Byzantine Faults

We start our analysis with a high-level abstraction which serves to justify our primary
claim of tolerance to Byzantine faults. The following model has the same structure
as that outlined in Section 2.1. We concentrate on modeling the communication
behavior of the system, and thus model the behavior of the input-output subsystem
alone, representing data flowing to or from the application or 10 devices by sets of
channels in and out. The pattern of communication is then as shown in Figure 2. The
channels in and out may not, of course, exist as explicit data paths in the case that
application processing and communications are combined on a single processor, but
there will always be some identifiable transfer of data corresponding to them. Each
FCR (i.e. each node in Figure 2) is represented by two processes, one representing
the outward transfer of local data to peer FCRs, the other representing voting using
data received.

The desired behavior of our system is described in [2] in terms of two properties
of a system distributing data from a single source by means of a two-stage algorithm.
The properties are:

29

Agreement If two processors are non-faulty, they agree on the data values which
they believe are being communicated.

Validity If the originator of a data item is non-faulty, all non-faulty processors derive
the correct value.

To model the two stage transmission we will consider a network consisting of the
four communication elements of our system together with an addition process which
performs the initial data distribution. In a physical system we would expect this
additional task to be implemented within one particular FCR, the transmitter of the
data flow being considered, while the other FCRs would be receivers of the flow.

We can verify a variety of properties of the system by adding components to our
network which do not correspond to any actual implementation processes, but rather
capture our ability to observe the system. For example, one reasonable property which
captures some aspects of the validity condition (although it is strictly weaker than
the version given above) is the claim that a majority of the outputs of all channels
should agree on the correct value, as long as the transmitter is functioning. We
may demonstrate that our system satisfies this requirement by adding a final overall
majority voting process to the system. If each FCR delivers the value it computes to
this final vote, then if the validity property holds of outputs of the FCRs, the output
of the voter must always match the value provided by the data source. The overall
data-flow through the network is shown in Figure 3. We require that this complete
system, when viewed as a data transmission medium between its source and the final
output, is a perfect buffer, provided that the first-round data distribution is non-
faulty. This must hold even if one of the receiver FCRs is Byzantine faulty. A CSP
model of this system (suitable for analysis with the FDR [3] tool) is given below.

tftp.csp: Model demonstrating tolerance of 4-FCR Oral-Messages algorithm to
a single Byzantine fault.

(c) Formal Systems Design & Development, Inc, 1994

Originated by: Dave Jackson.
— This version: $Id: tftp.csp,v 2.2 1995/04/20 20:45:12 dave Exp $

In the current model we are principally interested in the distinction between a real
data value and a potentially erroneous one. It will suffice, for the present, to consider
a single "good" data value, and an error token, Err:

RAWDATA = {0}

Err = 99 Any value not in RAWDATA

30

Figure 3: Detail of Data-flow Through FTP Model

31

DATA = union({Err},RAWDATA)

Specification of data exchange mechanism

We require that data is transmitted from the data source to the outputs of each commu-
nications element in such a way that a majority vote over all those outputs correctly
reflects the input. Our high level specification is thus that the system is a buffer. We
can in fact show that the system represents a deterministic buffer, as follows:

The initial state of an n place buffer is empty:

BUFFER(n) = BUFF(o,n)

For any state of the buffer, if it is empty it must accept an input.

BUFF(t.n) =
if (null(t)) then source?x:RAWDATA -> BUFF(<x>, n)
else

Otherwise, if the buffer is full it offers only an output.
if ((#(t))==n) then sink! (head(t)) -> BUFF(taiKt), n)
The final case, where the buffer is neither full nor empty allows both input and output.
else (source?x:RAWDATA -> BUFF(t~<x>, n))

[]
(sinklhead(t) -> BUFF(taiKt), n))

At the time of writing, the FDR tool requires that we specify a fixed maximum size
for our specification:
BUFF4 = BUFFERC4)
(This restriction is not theoretically necessary and we expect to be able to relax this
constraint in future versions of FDR2.)

Model of OM Algorithm for Four FCRs

The most complex basic component in the algorithm is the voting module: the following
process takes inputs from the channels specified in the set sources and passes majority
voted values to the channel sink

Voting is encoded by maintaining sets of those channels which have supplied values
for each data type, including error returns. Initially these sets are empty:

32

MAJ(sources, sink) = MAJORITY(sources, {}, {}, {}, sink)

While it is accepting input, the voter offers a choice over the inputs which it is still
expecting to receive. When input is received, the channel is added to the appropriate
set, and removed from the set of exepected inputs.

MAJORITY(expected, zeroes, ones, errs, sink) =
if (card(expected) == 0) then OUTPUT(zeroes, ones, errs, sink)

else ([] x : expected @ (x?y ->
(if (y==0)

then MAJORITY(diff(expected,{x}),
union(zeroes,{x}), ones, errs, sink)

else if (y==l) then
MAJORITY(diff(expected,{x}),

zeroes, union(ones,{x}),errs,sink)

else
MAJORITY(diff(expected,{x}),

zeroes, ones,union(errs,{x}),sink))))

When all expected inputs have been received, the voter supplies an output according to
the size of the sets of inputs received. (For a single element data domain, we output
the same (valid) value for any combination of valid inputs.)
OUTPUT(zeroes, ones, errs, sink) =

if ((card(zeroes)==4) or (card(zeroes)==3))
then sink!0 -> MAJ(Union(-[zeroes, ones, errs}), sink)
else sink!Err -> MAJ(Union({zeroes, ones, errs}), sink)

The other required component is a data distribution process. While we could write
this in a sequential form similar to the voter, we feel the symmetry of the action is
made clearer if we express this process as a parallel composition of simple buffers.
These buffers synchronize on their input but not on their output, yielding the required
interleaving behaviour.

COPY = inp ? x:RAWDATA -> oO ! x -> COPY

The following channel definitions specify the input to, and outputs from the first-stage
data distribution. Later instances of the data distribution process will be derived by
renaming this first one:

pragma channel inp : DATA

33

pragma channel oO, ol, o2, o3 : DATA

INSERT = COPY [| {inp } |]
C(C0PY[[oO <- ol]]) [| { inp }
((C0PY[[oO <- o2]]) [| { inp }

(COPYEC oO <- o3]])))

I]
I]

The following channels define the external interfaces to our model:

pragma channel source, sink : DATA

and these implement the connections between peers:

pragma channel xcmid : DATA
pragma channel xcOl, xc02, xc03
pragma channel xclO, xcl2, xcl3
pragma channel xc20, xc21, xc23
pragma channel xc30, xc31, xc32

DATA

DATA

DATA

DATA

and finally, the channels which represent the input and output from each of the FCRs:

pragma channel ain, bin, ein, din : DATA
pragma channel aout, bout, cout, dout : DATA

For brevity in later descriptions, we define sets of channels representing the inputs:

XCIO = {xclO, xc20, xc30}
XCI1 = {xcOl, xc21, xc31}
XCI2 = {xc02, xcl2, xc32}
XCI3 = {xc03, xcl3, xc23}

and outputs

XCOO = {xcOl, xc02, xc03}
XC01 = {xclO, xcl2, xcl3}
XC02 = {xc20, xc21, xc23}
XC03 = {xc30, xc31, xc32}

connecting each FCR to its peers. The total interface sets of each FCR are as follows:

34

ALPHAA = (Union({{ain, aout}, XCIO, XCOO}))
ALPHAB = (Union({{bin, bout}, XCI1, XC01}))
ALPHAC = (Union({{cin, cout}, XCI2, XC02}))
ALPHAD = (Union({{din, dout}, XCI3, XC03}))

We may now define processes representing each FCR. Each consists of a data dis-
tributor communicating with a voter by a channel xcmid. The data distributor also
provides outputs XCOn and the voter accepts inputs from set XCIn.

FTLANEA =
((INSERT [[inp<-ain, oO<-xcmid, ol<-xc01, o2<-xc02, o3<-xc03]])
[(union({ain, xcmid}, XCOO))I I(union({aout, xcmid}, XCIO))]

(MAJ(union(XCIO,{xcmid}), aout)))

\ {xcmid}

FTLANEB =
((INSERT [[inp<-bin, oO<-xcmid, ol<-xclO, o2<-xcl2, o3<-xcl3]])
[(union({bin, xcmid}, XCOD) I I (union({bout, xcmid}, XCI1))]

(MAJ(union(XCIl,{xcmid}), bout)))

\ {xcmid}

FTLANEC =
((INSERT [[inp<-cin, oO<-xcmid, ol<-xc20, o2<-xc21, o3<-xc23]])
[(union({cin, xcmid}, XC02))I I(union({cout, xcmid}, XCI2))]
(MAJ(union(XCI2,{xcmid}), cout)))
\ {xcmid}

FTLANED =
((INSERT [[inp<-din, oO<-xcmid, ol<-xc30, o2<-xc31, o3<-xc32]])
[(union({din, xcmid}, XC03))I I(union({dout, xcmid}, XCI3))]
(MAJ(union(XCI3,{xcmid}), dout)))
\ {xcmid}

The fault-tolerant communication system as a whole is a parallel combination of these:

FTBUFF =
(((FTLANEA [ALPHAAI IALPHAB] FTLANEB)
[union(ALPHAA, ALPHAB)I I union(ALPHAC,ALPHAD)]

(FTLANEC [ALPHACI IALPHAD] FTLANED)) \
Union({XCI0, XCI1, XCI2, XCI3}))

35

The following sets define the interfaces of the first-level data distribution, the voting
network just defined, and the majority voter used to complete the model.

ALPHAIN = {source, ain, bin, ein, din}
ALPHAFT = {ain, bin, ein, din, aout, bout, cout, dout}
ALPHAMJ = {sink, aout, bout, cout, dout}

These components are combined as follows:

SYSTEM =
(((INSERT [[inp<-source, oO<-ain, ol<-bin, o2<-cin, o3<-din]])

[ALPHAINI IALPHAFT]
FTBUFF)
[(Union({ALPHAIN, ALPHAFT}))IIALPHAMJ]
MAJ({aout, bout, cout, dout}, sink)) \ ALPHAFT

We hope, and indeed find, that BUFF4 C SYSTEM

Now consider a failed processor, assumed not to be the source of single source data:

RUN(A) = [] a:A 0 a -> RUN(A)

FTLANED' = RUN(Union({events(i)I i<- union({din},XCI3)}))
IN CHAOS(Union({events(i) I i <- union({|dout|},XC03)}))
Ml RUN({c.Err I c <- union({dout},XC03)})

NB broken channel always allows error outputs.

FTBUFF' =
(((FTLANEA [ALPHAAlIALPHAB] FTLANEB)
[union(ALPHAA, ALPHAB)I I union(ALPHAC.ALPHAD)]

(FTLANEC [ALPHACIIALPHAD] FTLANED')) \
Union({XCI0, XCI1, XCI2, XCI3}))

SYSTEM' =
(((INSERT [[inp<-source, oO<-ain, ol<-bin, o2<-cin, o3<-din]])

[ALPHAINI IALPHAFT]

FTBUFF')
[(Union({ALPHAIN, ALPHAFT}))IIALPHAMJ]
MAJ({aout, bout, cout, dout}, sink)) \ ALPHAFT

36

We observe (for a single element data set + error value) that BUFFA Z. SYSTEM'
(approx 2.4M state pairs).

For a straightforward agreement, we use a simpler final specification

pragma channel error

AGREE(sources) = AGR(sources, {}, {}, {})

While it is accepting input, the voter offers a choice over the inputs which it is still
expecting to receive. When input is received, the channel is added to the appropriate
set, and removed from the set of exepected inputs.

AGR(expected, zeroes, ones, errs) =
if (card(expected) == 0) then AGRTEST(zeroes, ones, errs)

else ([] x : expected Q (x?y ->
(if (y==0)

then AGR(diff(expected,{x}),
union(zeroes,{x}), ones, errs)

else if (y==l) then
AGR(diff(expected,{x}),

zeroes, union(ones,{x}),errs)
else

AGR(diff(expected,{x}),
zeroes, ones,union(errs,{x})))))

AGRTEST(zs,os,es) =
if card(zs) >= 3 or card(os) >= 3 then

AGREE(Union({zs,os,es}))
else error -> STOP

SYSAGREE =
(((INSERT [[inp<-source, oO<-ain, ol<-bin, o2<-cin, o3<-din]])
[ALPHAINI IALPHAFT]
FTBUFF')
[(Union({ALPHAIN, ALPHAFT}))IIALPHAMJ]
AGREE(-[aout, bout, cout, dout})) \ ALPHAFT

SPECAGREE = CHAOS({|source,sink|})

37

Similar models can be used to verify validity directly by replacing the voter with
a specific observer component. If the observer signals an error whenever the valid
outputs do not calculate the correct value, we may demand that no such errors are
never signalled, and so establish validity. Agreement can be specified in this style.

4 Refining the Architecture

4.1 Exploiting Symmetry

Whether verification is carried out by hand or mechanically, analysis of detailed mod-
els of the fault-tolerant processor will involve significant effort. Prom the structure of
the model, however, we can see a very clear symmetry between the four components
of the network.

We can exploit this symmetry in a number of ways, the most obvious being a
reduction in the number of possible failures to be considered. If the network is
operating in a fully symmetric manner, it obviously does not matter which of the
processors is considered to fail, and we may thus isolate failures to an arbitrary fixed
FCR. If the operation is asymmetric, as in the distribution of single-source data, we
way still exploit the three-fold symmetry of the receiver processes and model single
faults by only two cases: either the transmitter fails, or one of the receivers does. In
the latter case the identity of the failed lane can again be arbitrary.

A more powerful technique exploits not only the large-scale symmetry of the
network, but also takes advantage of the symmetric behavior of the components.
Suppose, for example, that the data distribution process is entirely symmetric as
regards the order and manner in which it makes its output available, as is the case
for the process INSERT in the model of Section 3. Recall the data-flow shown in
Figure 3; if we concentrate on the values produced by any one of the local voters, we
see that it depends on only four of the data interchanges (i.e. the value from its local
input and values received from its three peers. The relevant paths are highlighted
in Figure 4. The behavior of each data distribution phase when we consider only
one of its outputs will be significantly simplified, and indeed in many cases1 it will
degenerate to a simple form of buffer. The overall system which we must analyse to
predict the output of a given voter reduces to that shown in Figure 5. We can use this
simplification to allow us to prove properties of the whole system by considering only
a single voter. Suppose we show that the output of the voter in the figure agrees with
its input provided that no more than one of the preceding buffers (representing the
data distribution operation of each FCR) is faulty. Unless we use explicit assumptions
about which voter we consider and which buffer is faulty, our reasoning must then

typically those where blocking one output does not prevent further inputs and outputs on other
channels.

38

Figure 4: Data-flow to a Single Voter

39

Figure 5: Analysing the Output of a Single Voter

40

be valid for any functioning voter, and any single failure: we have established that
all functioning voters agree with the input. In practice, of course, not all the data
distributors will be identical in their relationship to the voter, because one of them
will be contained in the same FCR, and may be implemented by the same processor.
However, presence of a Byzantine fault in this distributor will then imply a potential
fault in the voter, and we do not need to (and cannot expect to) establish that FCRs
behavior.

This approach allows our models to concentrate on the behavior of a single com-
ponent in our system, rather than having to model and analyse four identical replicas.
We shall use this technique to demonstrate agreement propeties of the system in the
following section.

4.2 Verifying the Agreement Property

In Section 3, we commenced our analysis with the system's validity property, as
being a more practically motivated and in some respects stronger condition than the
agreement property. (As all functioning voters yield the value provided by the input,
it is obvious that all such nodes do agree!) The basic agreement property is still
important, however, as it gives us assurance of consistency between receivers, even
if a data source becomes faulty. We can check this property by changing the earlier
network as follows:

• The first-stage data distributor is replaced by a faulty component (as we assume
that the data source may have faults).

• One of the communications nodes is also assumed faulty (as we assume that
one node shares an FCR with the data source).

• The final voter is replaced by a process which observes the values from the
communications nodes, and signals an error if any cycle of communication does
not include all working channels in agreement, but which does not actually
distinguish which value is agreed upon. We may verify that the system satisfies
the agreement property simply by showing that the error condition can never
arise.

We can also exploit the symmetry of our system as described in the previous section,
reducing the number of voters actually modeled to two: by showing that these are
always in agreement we demonstrate agreement for any pair of fault-free outputs. The
following variant of the model introduced in Section 3 incorporates these features:

ftagree.csp: Model demonstrating agreement of 4-FCR Oral-Messages algorithm
in the presence of a single Byzantine fault.

41

(c) Formal Systems Design & Development, Inc, 1994 Originated by: Dave Jackson.
This version:
— $Id: ftagree.csp.v 1.3 1995/04/25 00:17:16 dave Exp $

Once again, the basic data types are boolean:
RAWDATA = {0,1}
We also define an error value Err (which can be any value not in RAWDATA).
Err = 99
DATA = union({Err},RAWDATA)

Specification of data exchange mechanism

We define an event which indicates that a disagreement has been detected:

pragma channel Error

This will be the only output of our system, and our specification insists that even this
should not occur, so our ultimate requirement is just that the system is equivalent to
the process which performs only input actions:

SPEC = RUN({source.i I i <- RAWDATA })

Model of the OM algorithm for two voters of a 4-FCR system

The voters are identical to those of the previous model:

MAJ(sources, sink) = MAJORITY(sources, {}, {}, {}, sink)

MAJORITY(expected, zeroes, ones, errs, sink) =
if (card(expected) == 0) then OUTPUT(zeroes, ones, errs, sink)

else ([] x : expected @ (x?y ->
(if (y==0)

then MAJORITY(diff(expected,{x}), union(zeroes,{x}), ones, errs, sink)
else if (y==l) then

MAJORITY(diff(expected,{x}), zeroes, union(ones,{x}),errs,sink)
else

MAJORITY(diff(expected,{x}), zeroes, ones,union(errs,{x}),sink))))

OUTPUT(zeroes, ones, errs, sink) =
if (card(ones) < card(zeroes))

42

then sinklO -> MAJ(Union({zeroes, ones, errs}), sink)
else sinkll -> MAJ(Union({zeroes, ones, errs}), sink)

Each of the 4 FCR 's will still provide data to the voters, but we are now concerned

with only two of the four outputs:

COPY = inp ? x:RAWDATA -> oO ! x -> COPY

pragma channel inp : DATA
pragma channel oO, ol, o2, o3 : DATA

Insert = (COPY [I {inp} I] (C0PY[[oO <- ol]]))

Source = COPY [I {inp } |]
((C0PY[[oO <- ol]]) [I { inp } |]
((C0PY[[oO <- o2]]) [I { inp } |]
(C0PY[[oO <- o3]])))

The overall structure of the model is unmodified:

Overall inputs and outputs

pragma channel source, sink : DATA

Peer-to-peer communications

pragma channel xcmid : DATA
pragma channel xcOl, xc02, xc03
pragma channel xclO, xcl2, xcl3
pragma channel xc20, xc21, xc23
pragma channel xc30, xc31, xc32

DATA

DATA

DATA

DATA

The data source and sink of each communications node

pragma channel ain, bin, ein, din : DATA
pragma channel aout, bout, cout, dout : DATA

And the interface sets of each FCR:

XCIO = {xclO, xc20, xc30}
XCI1 = {xcOl, xc21, xc31}

43

•

•

XCI2 = {xc02, xcl2, xc32}
XCI3 = {xc03, xcl3, xc23}

XCOO = {xcOl, xc02, xc03}
XCOl = {xclO, xcl2, xcl3}
XC02 = {xc20, xc21, xc23}
XC03 = {xc30, xc31, xc32}

ALPHAA = (Union({{ain, aout}, XCIO, XCOO}))
ALPHAB = (Union({{bin, bout}, XCI1, XCOl}))
ALPHAC = (Union({{cin, cout}, XCI2, XC02}))
ALPHAD = (Union({{din, dout}, XCI3, XC03}))

We now define processes representing the FCR 's. According to their role in our model,

we have three representations:

A functioning FCR whose output we study, with data distribution and voting compo-

nents;

A functioning FCR whose output is not analysed, containing just the data distribution

element; and

• A faulty FCR whose data distribution element is unreliable (and whose voted output

we do not model).

Two fully-modelled FCR's

FtLaneA =
((Insert [[inp <- ain, oO <- xcmid, ol <- xcOl]])
[(union({ain, xcmid}, XCOO))I I(union({aout, xcmid}, XCIO))]

(MAJ(union(XCIO,{xcmid}), aout)))

\ {xcmid}

FtLaneB =
((Insert [[inp <- bin, oO <- xcmid, ol <- xclO]])
[(union({bin, xcmid}, XCOl))I I(union({bout, xcmid}, XCI1))]
(MAJ(union(XCIl,{xcmid}), bout)))
\ {xcmid}

One partially-modelled non-faulty FCR:

44

FtLaneC =
(Insert [[inp <- ein, oO <- xc20, ol <- xc21]])

And a faulty FCR, which ignores all inputs and may produce arbitrary valid outputs,
and which may also be observed to be faulty:

FtLaneD = RUN(Union({events(i)I i<- union({din},XCI3)}))
IN CHAOS(Union({events(i) I i <- union({|dout|},XC03)}))
Ml RUN({c.Err I c <- union({dout},XC03)})

where RUN is the process which simply performs arbitary sequences of actions from
the specified set:

RUN(A) = [] a:A @ a -> RUN(A)

The fault-tolerant communication system as a whole is a parallel combination of these,
identical to the previous model:

FtBuff =
(((FtLaneA [ALPHAAlIALPHAB] FtLaneB)
[union(ALPHAA, ALPHAB)I|union(ALPHAC,ALPHAD)]

(FtLaneC [ALPHACllALPHAD] FtLaneD)) \ Union({XCI0, XCI1, XCI2, XCI3}))

ALPHAIN = {source, ain, bin, ein, din}
ALPHAFT = {ain, bin, ein, din, aout, bout, cout, dout}
ALPHAMJ = {Error, aout, bout, cout, dout}

Our observer process has a similar form to the majority voter, but can be simplified
because we consider fewer inputs to it, and it need generate only the Error signal,
when required.

Observer = aout ? x -> bout ? y -> Check(x,y) []
bout ? x -> aout ? y -> Check(x.y)

Check(x,y) = if x == y then Observer else Error -> STOP

The system structure is identical to that of the earlier model, with the faulty data
source and observer replacing the data distribution and voting elements:

45

System =
(((Source [[inp <- source, oO <- ain, ol <- bin, o2 <- ein, o3 <- din]])

[ALPHAINI IALPHAFT]

FtBuff)
[(Union({ALPHAIN, ALPHAFT}))IIALPHAMJ]

Observer) \ ALPHAFT

We may now verify that all behaviors System are behaviors of SPEC.

5 Fault-management & Application Programs

We have demonstrated in the preceding sections that tolerance to Byzantine faults
can be achieved by designing our network of replicated processors to implement the
Oral Messages algorithm. This tolerance is a property of the network and its commu-
nication pattern, and is thus independent of the actual application program, provided
that sufficient data is exchanged and voted upon to keep the replicated copies of the
program in agreement.

The second goal of our approach is to tolerate transient faults, including (but not
limited to) those which affect a large proportion of our network for a brief interval.
Designing and verifying strategies to achieve this aim will necessarily involve a more
detailed knowledge of the operation of the application program than we have used in
the earlier parts of this document. In particular, we will need knowledge of the tasks
executed by the application program and their data dependency and scheduling con-
straints. We will adopt the view that real-time applications are typically constructed
as a set of atomic tasks, exchanging data by means of shared variables, and subject
to data-dependency and timing constraints as discussed in [9].

5.1 Permuted scheduling

One method identified in [1] to reduce the impact of multi-processor transient faults
is to ensure that our replicated processors execute different tasks at each instant:
rather than fix a schedule for executing application code, we define a set of permuted
schedules. We intend that if a transient fault disrupts the tasks executing at a given
time on a number of processors, then there should still be enough redundant execu-
tions of those tasks completed at other points in the same scheduler cycle for valid
results to be obtained by voting.

5.1.1 Validity of Permutation

The potential benefits of permuted schedules can be verified using a relatively straight-
forward, if potentially unwieldy CSP model. The model given below characterize the

46

Communications element of a system by a series of VOTER processes, each con-
cerned with validating the output of some task. They repeatedly obtain information
(on a channel task) from the execution of a task; for simplicity we assume that it
is clear from a boolean flag passed along this channel whether or not the execution
succeeded2. Provided that at least two successful executions occur in each cycle, the
voter will successfully agree on the output values of that task (signalled by the pass
event) and wait for the end of a frame (indicated by the sync event).

The actual permuted schedules can be modeled in an abstract way by providing
each task with a "source" of executions - we do not need to model the actual schedules
explicitly, but only to capture the condition which a reasonable set of permutations
will satisfy in the presence of transients: each task will be executed four times in
each cycle, of which no more than one will be corrupted. This importance of this
model is that in later documents we will be able to constrain these sources by placing
them in parallel with particular schedulers, and verify that those schedulers do meet
the following correctness condition: We can combine source processes for each of the
tasks under consideration with the voters, and demonstrate that the voters are always
satisfied that sufficient executions have succeeded. In terms of the model below we
must show that each frame contains a pass event for all tasks.

timing, csp: A model supporting verification of permuted schedules and
associated voting.

(c) Formal Systems Design & Development, Inc, 1994

Originated by: Richard Chapman / Michael Goldsmith This version:
~ $Id: timing.csp,v 2.0 1994/12/16 17:44:03 dave Del $

Basic type definitions:

TASK = {0,1,2,3,4} The set of task names
BOOL = { true, false } and validity values

Channel declarations:

The following channels indicate completion of a task instance, and pass a flag indi-
cating its success or failure:
pragma channel task : TASK . BOOL

pass is used to indicate successful acquisition of sufficient correct copies of the output
of a task by a voter

2This is simply an abstraction of the actual voting and comparison of data.

47

pragma channel pass : TASK

pragma channel sync
indicates the end of a frame, and

pragma channel work
is an interleaved event simply representing the occurence of some internal computation
(typically related to comparing the results of different instances of a task).

The communication part of the system defines a voting process for each task in the

system:

COMMS = ((((VOTERCO, 2)
[| {| sync |} |] V0TERC1, 2))
[| {| sync 1} |] V0TERC2, 2))
[| {| sync |} |] V0TERC3, 2))
[| {| sync 1} 13 V0TERC4, 2))

The voters synchronize on the sync signal, ensuring that all tasks are validated with
respect to the same cycle boundaries.

The voter process itself accepts inputs on task, and when sufficient valid instances
have been counted, it outputs a pass signal recording the task number.

VOTER (i, n) =
task.i ? ok ->

if ok
then if n == 2

then VOTER (i, 1)
else if n == 1
then work -> pass ! i -> FRAME (i)
else work -> V0TER(i, n) never happens

else work -> VOTER (i, n)

After successful output, the voter waits for completion of the cycle. It is still prepared
to accept (and discard) further completion signals.
FRAME (i) =

(sync -> VOTER (i, 2)) [] task.i ? any -> work -> FRAME (i)

48

The tasks are represented by a combination of source processes, each enforcing the
condition that sufficient correct instances of the appropraite task occur in each cycle.
Their only interaction at present to to synchronize on the end-of-cycle signal.

Future models will exploit this framework by combining particular scheduler patterns
in parallel with these processes.

SOURCES = ((((SOURCE(O)

Cl {1 sync 1} |] SOURCE(D)

Cl {1 sync 1} |] S0URCEC2))

Cl {1 sync 1} |] SOURCE(3))

[1 {1 sync 1} |] SOURCE(4))

At the start of each cycle, four instances of the task are required, and no incorrect
instances have been observed.

SOURCE (i) = NOTYETBROKEN (i, 4)

This process represents a source which has yet to observe an unsuccessful execution.
It permits a synchronization signal and a return to its initial state if all four instances
of the task have been observed, (n holds the number yet to be seen). If only one task
remains to complete, it will allow the end-of-frame signal, assuming the last instance of
the task to have failed. In other cases, it waits for a completion signal and decerments
the counter if the execution succeed, or moves to the ALREADY BROKEN state if
it failed.

NOTYETBROKEN (i, n) =
if n == 0
then sync -> SOURCE (i)

else if n == 1
then sync -> SOURCE (i) [] task.i ? ok -> sync -> SOURCE (i)

else task.i ? ok ->
if ok
then NOTYETBROKEN (i, n-1)
else ALREADYBROKEN (i, n-1)

In each cycle, once a single erroneous execution has been observed, the remaining n
must complete successfully.

ALREADYBROKEN (i, n) =
if n == 0

49

then sync -> SOURCE (i)
else task.i ! true -> ALREADYBROKEN (i, n-1)

In the current version, our system model is simply the combination of the task execu-
tion part and the communication part.

SYSTEM = SOURCES [I {I sync, task 1} |] COMMS

The model show above does have some practical disadvantages, however. The
computation (represented by work), and the task completion (task) signals are ar-
bitrarily interleaved, and the number of possible states whose behavior must be con-
sidered (either by automatic or manual analysis) grows very rapidly as the number
of tasks considered increases. We can reduce this growth by noting that the voters
would in practice differentiate between processing and communication, possibly re-
fusing to exchange more data until the work associated with previous communication
was complete. In the CSP model, we wish to distinguish the work events from the
task communications by a difference in priority.

Encoding this distinction in a form suitable for use with the current FDR tool
is quite difficult. We must consider the voters as constituting a single process which
maintains a vector of information, holding a count of executions of each task in each
element of the vector. This allows us to replace the interleaving of communications in
the previous model with a sequential form which maintains the desired relationship
between task, work and pass events. A model which uses the SML embedding
techniques supported by FDR to implement this scheme is given in Appendix A.

A much more satisfactory model incorporating priorities to distinguish internal
and external activity in a system or sub-system can be built on the basis of Dr Gold-
smith's work described in another part of this report [5]. The FDR tool currently
under development ([4]) will, when extended by the prioritization operator developed
by this project and discussed in [5], allow such models to be written in the simpler
style of the model given above, while maintaining the semantic distinctions and prac-
tical efficiency of that given in Appendix A. Such a framework will be essential for
the extension of this framework into a tool for checking the transient-tolerance of a
specified set of permutations of a schedule.

5.1.2 Permitted Permutations

For the use of permuted schedules to be valid, we must be able to find an appropriate
number of viable schedules for the task set which makes up the application program.
This potentially difficult task is subject to some non-obvious constraints, as we will
show here. Consider the data dependence relation and four schedules in Figure 6.
Assume all tasks take equal time to execute. The instance of task one in any given
frame for processor four computes a value that will not be computed by the other

50

three processors until the beginning of the next frame. Suppose that we are voting on
task seven only, and that processor four's value for task seven in some frame turns out
to be in error. That means that the value already computed for task one for the next
cycle must also be invalidated. Somehow, processor four must at some future point
"catch up" - compute values for tasks one through six, since they are not voted, and
be able to compute a valid value for task one in advance of the other three processors
if it is to resume executing its schedule. Processor four will never be able to do it,
since to do so it must after some number of frames k have computed 7k + 1 values in
Ik time slots.

Processor 1:
...11234567112345671.

Processor 2:
...123651 47123651471
Processor 3:
... 131 26457131 26457I
Processor 4:
...12536471 12536471 I.

Figure 6: Disallowed set of permutations

Consequently we require permissible permuted schedules to obey the property that
within a single frame the instances of a task on all replicated processors correspond
to the same iteration. That is, if we let Op

k(ti) represent the output from task *,- on
processor p in frame k, then in the absence of failures,

VJfc.Vj/ € Processor s.Op
k\ti) = Op

k{U)

5.2 Voting in permuted schedules

The standard method of implementing systems whose state information is maintained
by an interactive consistency algorithm such as Oral Messages is to arrange that
applications use the agreed value of a state variable in place of the locally calculated
one when a task requires that variable as input. In effect, we must arrange our voting
and computation in such a way that a sufficient set of state values are always agreed
by voting before they are used by tasks which depend on them.

These constraints further complicate the process of finding suitable schedules for
a set of redundant processors which, as the previous section and reference [9] show,
is already subject to significant constraints.

We therefore seek to relax this "vote before use" condition, in order to introduce
sufficient flexibility to support permuted schedules and to gain other benefits:

51

• Relaxing the restriction places fewer constraints on the sequence in which tasks
can be executed, potentially reducing any need for one processor to be idle while
others compute values which need agreement.

• In systems where computation (by the application) and communication (which
constitutes much of the voting process) use different resources, they can be over-
lapped to a greater extent if the strict ordering is relaxed, leading to significant
performance benefits.

Rather than requiring the replicated processors to vote on the outputs of all tasks,
we only specify voting on outputs to actuators and on a set of tasks satisfying a
minimal voting condition ([11], p. 60), which we call a basis set of tasks. If permuted
schedules were not permitted, voting could occur immediately upon completion of the
task to be voted (by all the processors) which should happen simultaneously, given
the requirement that we know absolute execution times for all tasks ([1], p. 1).

However, if permuted schedules are permitted, voting must be delayed at least
until a plurality of processors have computed some output value for the task to be
voted. The point within a frame at which a given basis task's output can be voted
is statically determinable and thus the communication events necessary to carry out
the voting can be incorporated into the schedule.

A consequence of the necessary delay in voting is that it becomes likely that a
processor that is the first to run some basis task will have to use its locally computed,
not yet voted, value for the output of that basis task until the voted value becomes
available. If the voted value agrees with the locally computed value, all is well, but
if the locally computed value is invalidated by the vote, the processor must begin
recovery of a number of tasks. The results of not only the voted task but also all
other comparable tasks (either as ancestors or descendants) in the transitive closure
of the data dependence relation between tasks [7] become invalid, as in the example of
Figure 7. Upon invalidation of any tasks, there must exist some sequence of actions
that the recovered processor can take to restore all invalidated tasks to having valid
input data at the appropriate times in each frame, according to its schedule.

We can shorten the waiting period required for voting by not requiring a task
to wait for results from all four replicated processors. Two values in agreement are
enough evidence for a processor to conclude that it has the voted value, so why
wait for all four? However, a processor that proceeds before receiving input from all
processors contributing to a vote must ensure that those messages it plans to ignore
are properly dealt with if they should arrive at some future point. We propose that
a processor deciding to ignore communications from some other processors should
spawn a sacrificial buffer process that will catch those messages when they do arrive,
or notify the processor if they never do (that is, if the buffer process receives another
request from its own processor to wait on a value from the peer processor before it
has received a first value from the peer). This fact is evidence of a failure either in

52

inv = task output
invalidated

val =task output
remains valid

data dependence
between tasks

Figure 7: Tasks that must be invalidated

the peer processor or the link. We outline a specification for such a buffer and the
code that the processor spawning the buffer must run in the next section of this note.

There are obviously a number of potential difficulties which relaxing the voting
pattern in this way may introduce. It is obviously vital that the tolerance of Byzantine
faults should not be reduced, and indeed this fact does follow from the properties of
the network shown in Section 3. Because we do eventually obtain as much information
on the correctness of a value as is available in the straight-forward implementation
of the OM algorithm our ability to detect and correct errors is unaltered, although
detection of an error may be slightly delayed when compared with a fully sequential
voting arrangement.

The most significant penalty incurred by the change is that transient errors in
the data held by a processor are no longer corrected "automatically": if state data is
always agreed with a processor's peers before being used then a single corrupt value
will not be passed to any instance of the tasks which use it, and if the fault causing
corruption is transient it will be corrected when the value is next modified. This
is obviously not the case if a processor continues using the corrupt value without
checking it. The process of recovery from transient errors will be considered further
in a later section.

6 Distributed Models of a Voter

Below we develop a model of a voting mechanism that can be used when processors
are running permuted schedules. Rather than requiring the communications processor
to spawn a process to catch "late" data values transmitted by peer processors, we

53

add four local processes, running concurrently with the voting mechanism, which we
call smart buffers. Each smart buffer is responsible for reception of messages from
one of the peer processors, for maintaining the local processors' decision about the
state of that peer processor (good, faulty, or dead), and for conveying information
about recent communications with the peer processor when requested.

Buffers

(NONEorBOTH or PARENT or PEER)

Local
Processor

(UNDECIDED

or DECIDED)

sink

outside .0

outside. 1

outside.2

outside.3

Figure 8: Local processor and buffers for communication with peers

The buffer has three major states. The current state is determined by which of
the local (or parent) processor or the remote (or peer) processor it has last com-
municated with. The communications processor has two major states. We say it is
decided if it has determined the valid value for its task for this frame as a result of
comparisons between values sent by the remote processors for the task's value this
frame. Otherwise it is undecided .

sb.csp: Distributed model of communication and voting

(c) Formal Systems Design & Development, Inc, 1994

Originated by: Richard Chapman This version:

54

-- $Id: sb.csp,v 2.0 1994/12/16 17:44:03 dave Del $

There are four processors, numbered 0 to 3.

FOUR = {0, 1, 2, 3}

The value computed by a task may be one of two valid values, or a mesage from a
processor to ignore its value

DATAVAL = { one, zero , ignoreme }

A processor may assign one of its peers any of the following status values

STATUSVAL = { bad, ok, dead }

The system present at each processor consists of the process running on the processor
itself, plus four concurrent processes representing buffers to receive values from the
remote processors (we could handle the value computed locally as a special case, but
do not). The 4 buffer processes send data values to the local processor over the offer
channels

pragma channel offer : FOUR . DATAVAL

The local processor can communicate its voted value for the task to the buffers over
the parent channels

pragma channel parent : FOUR . DATAVAL

Channel last is used by a buffer to communicate the status of the peer with which it
communicates to the local processor.

pragma channel last : FOUR . STATUSVAL

Sink is the channel on which the processor broadcasts a valid value for a task to the
outside world, once per frame

pragma channel sink : DATAVAL

Synchronization signal sent between successive iterations of a task:

pragma channel frame

55

channels for peer processors to send values to sacrificial buffers:

pragma channel outside : FOUR . DATAVAL

Code for the local processor to interface with the sacrificial buffer

A processor determines the valid value for a task by receiving the values computed by
its peer processors and comparing that value with its own locally-computed value for
that task. Once a processor has received the same value from two processors (one of
which could be itself), it can conclude that the value it received more than once is the
valid value.

At any time, the communications processor will be running one of two processes (UN-
DECIDED or DECIDED) for each task.

The process UNDECIDED represents the state of the communications processor when
it has not yet received two values in agreement for some task. The set I is the set of
other processors from which the processor has yet to receive a value, and the set A is
a set of ordered pairs (processor, value) that have been received. If a peer processor
sends an ignoreme message, its number is removed from I. If a peer processor sends
any other data value, that value is compared to previously received values. If that value
is found in the list, the processor concludes that it has the valid value and behaves like
process DECIDED (keeping track in its first parameter of which peer processes from
which it has not yet heard), else it adds the value to the set of received values and
behaves like UNDECIDED

UNDECIDED (I, A, untimed) =
([] i: I ® offer.i ? x ->

if (x == ignoreme) then
UNDECIDED (diff (I, {i}), A, untimed) else

if (member (x, { head (tail (xl)) I xl <- A })) then
DECIDED (diff (I, {i}), x, untimed)

else
UNDECIDED(diff(I,{i}), union(A,{ <i,x> }), untimed)

)

Once a process has decided the valid value for a task (parameter x in the process
DECIDED, below) , it can use that value for further computation, but must rely on a
process (a concurrently running "smart buffer") to handle reception of the remaining

56

transmissions of values for that task by the other peer processors (whose numbers are
in set I). The smart buffer must also be responsible for notifying the local processor if
any peer processors fail to respond

As soon as the local processor decides the valid value, it sends value over channel
parent to the buffers, who will use it in determining the status (good, bad, or dead) of
the peer processors

When the local processor has finished notifying the buffers, it announces the value it
determined to be valid to the outside world over channel sink, then waits for the frame
synchronization event and starts over.

DECIDED (I, x, untimed) =
([] i:I <3 parent.i ! x -> last.i ? s ->

DECIDED (diff (I, {i}), x, untimed))

[]
(if (empty (I)) then

sink ! x ->
if untimed
then frame -> UNDECIDED (FOUR, {}, untimed)
else UNDECIDED (FOUR, {}, untimed)

else STOP)

Code for a smart buffer running in parallel with a processor

The smart buffer has one of several states depending on whom it heard from last: the
PARENT (local) processor, the PEER (remote or local) processor, or NONEorBOTH
(ready to receive a message from either).

Initially, a smart buffer has not heard either from its parent (via channel parent) or
from any peer processor (via channel outside). It is ready to communicate via either
channel, and change its state based on which it hears from first

NONEorBOTH (i, s, untimed) =
(parent.i ? x -> last.i ! s -> PARENT (i, x, untimed))
[]
(outside.i ? y -> PEER (i, y, s, untimed))

A smart buffer that has last heard from its parent knows the value the parent decided
was valid (x), and is waiting to hear that value from the PEER processor. If it does

57

hear a value from the peer, it computes a statusvalfor the peer (okay or bad, depending
if the value sent by the peer is the same as that decided upon by the parent) and resumes
listening for either the parent or the peer

If the frame event occurs before the buffer hears from the peer, it assumes the peer
is dead and changes its status accordingly. If frame events are not being used, if the
buffer hears from the parent again before hearing from the peer, it sends a message to
the parent (over channel last) indicating that it believes the peer is dead

PARENT (i, x, untimed) =
(outside.i ? y ->

if untimed
then frame ->

NONEorBOTH (i, if x==y then ok else bad, untimed)
else

NONEorBOTH (i, if x==y then ok else bad, untimed))

[]
if untimed
then frame -> NONEorBOTH (i, dead, untimed)
else parent.i ? xx -> last.i ! dead -> PARENT(i, xx, untimed)

A buffer that has heard from the peer processor sends the value it heard to the parent
via the offer channel. After sending an offer it waits for the frame synchronization
event and then resumes waiting to hear from either the parent or the peer

If the processor receives a value from the parent before it can offer the value from
the peer to the parent, obviously the parent already had enough values from other
buffers to make a decision, so the buffer sends the status value from the last frame
to the processor and then computes a new status value for this frame, arrived at by
comparing the value received from the parent this frame with the value received from
the peer this frame, then waits for the frame synchronization event, and then listens
for either the parent or peer at the start of the next frame

PEER (i, y, s, untimed) =
(offer.i ! y ->

if untimed
then frame -> NONEorBOTH (i, ok, untimed)

else NONEorBOTH (i, ok, untimed))

[]
(parent.i ? x -> last.i ! s ->

if untimed

58

then frame ->
NONEorBOTH (i, if x==y then ok else bad, untimed)

else
NONEorBOTH (i, if x==y then ok else bad, untimed))

The system consists of a processor (initially running UNDECIDED (FOUR,,true) and
four smart buffers, one for each of the four peer processors. We could optimize this
to three and handle the locally computed value entirely within the local processor if
desired

uSYSTEM = UNDECIDED (FOUR, {}, true)
[| {| last, offer, parent, frame 1} |]
((((NONEorBOTH (0, ok, true))

[| {frame} I] NONEorBOTH (1, ok, true))
[| {frame} |] NONEorBOTH (2, ok, true))
[| {frame} |] NONBEorBOTH (3, ok, true))

When we hide the communication between the four buffers and the local processor we
get:

UntimedSystem = uSYSTEM \ {| last, offer, parent 1}

If we dispense with the frame synchronization events:

tSYSTEM = UNDECIDED (FOUR, {}, false)
[| {| last, offer, parent |} |]
((NONEorBOTH(0,ok,false) III NONEorBOTHd,ok,false)

Ml NONEorBOTH(2,ok,false) III N0NEorB0TH(3,ok,false))
[| {| frame 1} |] frame -> ZERO)

SystemWithoutTiming = tSYSTEM \ {I last, offer, parent |}

In order to assert that frame never occurs, the process above includes a transition to
ZERO if frame should ever occur. Because ZERO is the "worst-possible" process in
the Failures-Divergence model, this will result in tSYSTEM failing any non-trivial
refinement check, should frame occur.

ZERO = ZERO ri ZERO

The bottom process is represented as a non-deterministic choice for purely technical

59

reasons. (FDRcannot itself successfully compile the more usual definition
— ZERO = ZERO).

The specification for the System described above

MAJORITY'S three parameters are sets of processes. I represents the processors which
have not contributed a value for the task this frame, while Zeroes and Ones are re-
spectively, the sets of processors that have contributed a value of zero and a value of
one this frame (note that a processor sending an ignoreme message drops out of I
without ever appearing in Ones or Zeroes that frame)

If the size of Zeroes exceeds one, the specification may output a value of one on channel
sink. It may output a zero on sink if the size of Zeroes exceeds one. If both sets exceed
one in size, the specification produces a nondeterministic result

If the set I is not empty at the time the specification sends its decision on the valid
value on channel sink, the specification must behave like process CHOMP until the
end of the frame

CHOMP acts as a buffer to receive any values transmitted by the peer processors after
the local processor has produced output during that frame on channel sink (in the
system, the smart buffers handle this)

MAJORITY (I, Zeroes, Ones) =
(outside ? i:I ? x ->

' if (x == zero)
then MAJORITY (diff (I, {i}), union (Zeroes, {i}), Ones)

else if (x == one)
then MAJORITY(diff(I, {i}), Zeroes, union(0nes, {i}))
else MAJORITY(diff(I, {i}), Zeroes, Ones))

[]
((if 1 < card (Ones)
then sink ! one -> CHOMP (I)

else STOP)

l"l
if 1 < card (Zeroes)
then sink ! zero -> CHOMP (I)

else STOP)

[]
if empty (I)
then (if card (Ones) < card (Zeroes)

60

then sink ! zero -> CHOMP (I)
else if card (Zeroes) < card (Ones)
then sink ! one -> CHOMP (I)
else (sink ! zero -> CHOMP (I) l"l

sink ! one -> CHOMP (I)))

else STOP

CHOMP(I) =
(outside ? i:I ? x -> CHOMP (diff (I, {i})))

[]
frame -> MAJORITY (FOUR, {}, O)

Initially, no processors have sent values of one or zero, and the specification is waiting
on a value from all four processors

SPEC = MAJORITY (FOUR, {}, O)

Here we model the data distribution phase. A value on channel source is copied to
each of the four outside channels by processes INJECTOR and SPREAD. A frame
synchronization event is expected between sucessive inputs on channel source (and
consequently between any successive pair of outside, i events).

pragma channel source : DATAVAL

INJECTOR = source ? x -> SPREAD (FOUR, x)

SPREAD (I, x) =
if empty (I)
then frame -> INJECTOR
else ri i:I @ outside.i ! x -> SPREAD (diff(I, {i}), x)

FRAMESYNCH =
(INJECTOR Cl {| outside, frame |} |] UntimedSystem) \
{| outside, frame 1}

We introduce the possibility of a fault on channel outside. 0 The same symmetry ar-
guments previously made apply here.

XFRAMESYNCH =
((INJECTOR \ {| outside.0 1} III CHAOS ({I outside.0 |}))

[| {| outside, frame 1} |]

61

UntimedSystem) \ {I outside, frame 1}

CYCLICINPUT =
(INJECTOR [| {| outside 1} |] SystemWithoutTiming) \

{| outside, frame |}

XCYCLICINPUT =
((INJECTOR \ {| outside.0 1} III CHAOS ({I outside.0 |}))

[| {| outside 1} |]
SystemWithoutTiming) \ {| outside, frame |}

pragma channel forward : FOUR . DATAVAL

A 1-place buffer is introduced along each of the four outside.i channels, fed by the
INJECTOR

B0UNDEDDELAY1 =
((INJECTOR[[outside<-forward]]
[| {| forward |} I]
(BBUFFc(l.forward.0,outside.O)
Ml BBUFFc(l,forward. 1,outside.i)
Ml BBUFFc (1, forward. 2, out side. 2)
Ml BBUFFcd,forward.3,outside.3))

) \ {| forward, frame 1}
[| {| outside |} |]
SystemWithoutTiming) \ {| outside |}

The possibility of a fault is allowed on channel outside. 0

XB0UNDEDDELAY1 «
(((INJECTOR \ {| outside.0 1} III CHAOS ({I outside.0 I}))

[| {| forward 1} I]
(BBUFFc(l,forward.1,outside.i)
Ml BBUFFcd, forward. 2, out side. 2)
Ml BBUFFcd,forward.3,outside.3))

) \ {| forward, frame |}
[| {| outside |} |]
SystemWithoutTiming) \ {| outside 1}

pragma channel tock

62

REGULATOR runs in parallel with the distribution of values to the outside channels
to guarantee that all transmissions of values on the the outside.i channels (i is an
element of parameter I) occur within N tocks, and that following the completion of
one frame of events on the outside channels, M tocks elapse before the outside events
for the next frame commence

REGULATOR (I, M, N) =
tock -> REGULATOR (I, M, N) []
outside ? i:I ? x -> REGULATOR' (I, M, N, diff (I, {i}), 0)

J is the subset of I whose outside channels have had no event this frame yet, while n
is the number of tocks elapsed since beginning of this frame 's outside events

REGULATOR' (I, M, N, J, n) =

(if n < N
then tock -> REGULATOR' (I, M, N, J, n+1)

else STOP)

[]
(outside ? i:I ? x -> REGULATOR' (I, M, N, diff (J, {i}), n))

[]
(if empty (J)
then DELAY (M); REGULATOR (I, M, N)
else outside ? i:I ? x -> REGULATOR'(I,M,N,diff(J,{i>),n))

DELAY ensures that n tocks elapse between last outside event of one frame and first
outside event of the next frame

DELAY (n) = if 0 < n then tock -> DELAY (n-1) else SKIP

Adding the REGULATOR to the rest of the already-developed system gives:

REGULATED1 =
(((INJECTOR[[outside<-forward]3

[| -d forward 1} |]
(BBUFFc(l,forward.0,outside.0)
IN BBUFFcd,forward. 1,outside.i)
Ml BBUFFcd,forward.2,outside.2)
Ml BBUFFcd,forward.3,outside.3))
) \ {| forward, frame 1}

[| {| outside |} |]

REGULATOR (FOUR, 2, 2)) \ {tock}

63

[| {| outside 1} |]
SystemWithoutTiming) \ {I outside 1}

and if we allow channel outside.O to be faulty:

XB0UNDEDDELAY1 =
(((INJECTOR \ {I outside.O 1} I I I CHAOS ({I outside.O I»)
[| {| forward 1} |]
(BBUFFcd, forward. 1, outside. 1)
III BBUFFcd,forward.2.outside.2)
I | I BBUFFcd,forward.3,outside.3))

) \ {| forward, frame |}
[| {| outside 1} |]
SystemWithoutTiming) \ {| outside 1}

Suppose we want to add the restriction that an event occurs on each of the four outside
channels every k tocks, where k can vary from frame to frame, but must always be
within some bounds of N tocks. Say, for some other integers A and B, that k can
never be less than N - A nor more than N + B . Process PWB guarantees that rate
of events on channel c:

PWB (c, N, B, A) = PWB' (c, N, B, A, 0)

PWB' (c, N, B, A, n) =

if n < N - B
then tock -> PWB' (c, N, B, A, n+1)
else if n < N + A
then (tock -> PWB' (c, N, B, A, n+D)

\~\ (c ? x -> PWB' (c, N, B, A, n-N))

else c ? x -> PWB' (c, N, B, A, n-N)

PWBs = (((PWB (outside.O, 5, 2, 2)
Cl {tock} |] PWB (outside.1, 5, 2, 2))
Cl {tock} I] PWB (outside.2, 5, 2, 2))
Cl {tock} |] PWB (outside.3, 5, 2, 2))

Adding the restrictions on the buffers to the system yields:

PWB1 = ((INJECTOR[[outside<-forward]]
Cl {| forward 1} |]
(BBUFFc (l.forward.O,outside.O)

64

IM BBUFFc (1,forward.1,outside. 1)
Ml BBUFFc (1,forward.2,outside.2)
Ml BBUFFc (1,forward.3,outside.3))

) \ {| forward, frame |}
[| {| outside |} |]

(PWBs \ {tock}
[| {| outside |} |]
SystemWithoutTiming)) \ {I outside 1}

RUN(X) = [] a:X 0 a -> RUN(X)

But we must also model the possibility that our faulty channel (channel outside. 0)
does not produce its values in a timely fashion:

XPWBs = ((PWB (outside.1, 5, 2, 2)
[| {tock} |] PWB (outside.2, 5, 2, 2))
[| {tock} |] PWB (outside.3, 5, 2, 2))

The system becomes:

XPWB1 = ((INJECT0R[[outside<-forward]3
[| {| forward |} |]
(RUN ({Iforward.Ol}) III CHAOS ({I outside.01})
Ml BBUFFc (1, forward.!., outside. 1)
Ml BBUFFc (1,forward.2,outside.2)
Ml BBUFFc (1,forward.3,outside.3))

) \ {| forward, frame 1}
[| {| outside 1} I]
(XPWBs \ {tock}
[| {| outside |} |]
SystemWithoutTiming)) \ {| outside |}

Generic 1-place buffers

An N-place buffer receiving input on channel source and producing output on channel
sink:

BBUFF (N) = BBUFFc (N, source, sink)

BBUFFc is an N-place buffer also taking the names of its input and output channels
as parameters:

65

BBUFFc (N, in, out) = BBUFF' (N, 0, <>, in, out)

There are two more components to the state of BBUFF': it's current contents (the
list of values s) and the number of items currently stored in the buffer:

BBUFF' (N, n, s, in, out) =
if n == 0
then in ? x -> BBUFF' (N, 1, <x>, in, out)

else if n == N
then out ! head (s) -> BBUFF' (N, n-1, tail (s), in, out)

else
((out ! head (s) -> BBUFF' (N, n-1, tail (s), in, out))

[] (in ? x -> BBUFF' (N, n+1, s~<x>, in, out)
|~| out ! head (s) -> BBUFF'(N,n-1,tail(s),in,out)))

7 Recovery from transient errors

In order to arrange that a process can recover from a transient error even if values
are not always agreed before use, we must arrange that:

• An FCR which has suffered a transient fault can detect the resulting error and
thus take appropriate recovery action.

• While such a node is recovering the erroneous values, it does not promote failure
in the other FCRs in the system.

• During recovery, all significant state values will be recovered from correctly func-
tioning peer nodes, and sufficient computation will be performed to maintain
and re-generate state which is not directly communicated.

The first two requirements are relatively undemanding; the first is effectively a con-
straint on the types of errors that we can expect to tolerate. One implication which
must be considered, however, is that the design will have to distinguish between a
"local" value and a value received from a peer when performing comparisons3. If
the "local" value disagrees with the majority, then a node should be considered to
have suffered a fault and should attempt to recover the relevant values. The second
requirement is also trivial for some classes of faults. If no further errors occur in the

3Note that the models in Section 3 did not need to make this distinction.

66

portion of the system state related to that which we are attempting to recover (using
the dependency relationship discussed in Section 5.2), we are guaranteed that three
correct values will always be available to non-faulty nodes, and thus any erroneous
output from a processor in the process of recovering will be ignored. We can gain
some advantage, however, from allowing a processor which has detected a transient
fault to notify its peers of this fact: the three remaining FCRs may then be able to
survive a second non-independent error by moving to a 2-out-of-3 voting scheme.

The last requirement in the above list is the most difficult to satisfy. If, for reasons
of timing drift or because of a permuted schedule, a processor suffering a transient
fault was the earliest node to compute the relevant values in each frame, we may
never be able to guarantee that it can obtain a timely, reliable value from its peers.
We can suggest several approaches to this problem, including

• Arranging that the entire system reverts to a fall-back schedule which does
guarantee to agree all state values by voting.

• Finding (where possible) a "reversionary" schedule for the failed processor alone.

• Arranging that the recovering processor and one of the fault-free peers change
to pair of reversionary schedules which transfer corrected data to the recovering
node while maintaining just sufficient of the normal behavior to ensure correct
system operation.

These possibilities are discussed below:

7.0.1 A fully-voted reversionary schedule

We might propose the following scheme of operation: whenever it is determined that
a processor has computed an invalid result for some task, that processor will be asked
to sit idle until the end of the current frame, at which time all processors will stop
running their particular permuted schedules and start running a single already-agreed-
upon schedule. Thus, during the next frame, all processors will be running the same
schedule. We know because of our requirement from Section 5.1.2 that only permitted
permutations were used, that the output records for all non-invalidated replicated
instances of all tasks contain the same data, and that if the invalid processor has not
failed, it can recover valid values for all tasks (values derived from voted values of
all tasks in the basis set) by the end of the next frame. If no notifications of invalid
results are received by any processors during the execution of the recovery frame, the
processors switch to their particular permuted schedules at the end of that recovery
frame.

This scheme does, however, limit many of the advantages which motivate our use
a relaxed voting scheme. If we must be able to operate on a fully-voted schedule, we
cannot take advantage of the performance benefits which overlapping communication

67

and computation will bring. In particular, there will be many sets of permuted
schedules for which no suitable fixed schedule with complete voting will exist. Further,
at least for the duration of the recovery, we will have lost the benefits of permuted
scheduling.

7.0.2 A single reversionary schedule

This alternative again suffers from the disadvantage that for many applications there
will be no single order of task execution which requires data only after it has been
made available by one of the peer nodes. If only the recovering processor reverts to
this schedule, however, we can remove some of the constraints limiting our execution
order. In particular, the reversionary schedule need not calculate any outputs or other
values which are calculated afresh in each cycle; it need only perform that minimum
computation which is necessary to maintain the relevant node state. In terms of the
data dependency graph, we need only execute those tasks which occur on the cycles
through the initial erroneous task. Branches which do not form part of a cycle may
be neglected, and indeed as we saw above, there are concrete advantages to be gained
from a processor informing its peers that it should be ignored in any votes which take
place during its recovery.

Due to the difficulty of finding a suitable schedule (if one exists), this technique will
obviously be limited in its application, particularly as to exploit the potential benefits
of permuted scheduling, we must find a number of recovery schedules, each capable
of re-generating a particular set of corrupt values while maintaining the outputs and
correct behavior of the uncorrupted elements of the application.

7.0.3 Partial reversionary schedules

In an attempt to avoid some of the difficulties associated with both of the above
schemes, we propose considering a method which combines some features from each.
Finding a single processor schedule which is compatible with the permuted schedules
already running on fault-free processors, as required by the previous scheme is clearly
more difficult than the problem of finding two schedules which suffice to transfer
some part of the system schedule to the recovering processor. This latter problem
is simplified further if we allow the fault-free partner in such a recovery to neglect
some of its output calculations (on the basis that there will still be duplicate correct
values generated by the remaining pair) - we clearly lose tolerance to further faults
during this operation, but the practical value of such resilience to two faults will
obviously depend on the reliability analysis of a particular application. We do require
a mechanism for identifying which processor should assist in the recovery when a fault
is detected, but even here we may have a degree of choice over which of the remaining
permuted schedules is most suitable for correcting the specific error identified.

68

The greatest cost of this approach is the effort of identifying sufficiently many
reversionary schedules to maintain the benefits of temporal redundancy. We should
note, however, that this is a task which is determined entirely by the static schedules
chosen, and thus need not be carried out in a time-critical environment. The run-time
penalty should be little more than identifying which regions of the data-dependency
graph have been invalidated and looking up the appropriate recovery schedules in a
pre-computed table.

To ease this task, it is perhaps desirable to consider the data-dependency graph
as being divided into software containment regions which are treated as either being
believed correct or believed corrupted as a whole. These regions must obviously
contain the transitive closure of the relevant voted state variables, as discussed in
Section 5.2. We also note that the fault-free processors initiating a recovery must
agree on the identity of the FCR to be recovered and on the particular peer who will
enter the assisting reversionary schedule. This information is, however, amenable to
voting in a similar manner to other values, and is only required when votes are taken
on state data - it need not apply to the agreement of output values, for example.

8 Conclusions

We do not expect this document to be viewed as a complete analysis of the FTP
design, but to be seen as a working paper describing the state of various threads
of analysis and modeling. One of the primary purposes of this paper is indeed, to
present some ideas for comment from Draper representatives who, we hope, will be
able to view them in the context of their greater familiarity with the concerns of the
application domain. Significant features of recent developments include:

• Clarification of arguments based on symmetry which can be used to establish
properties of the full FTP system from properties of a single voter. This work
is sufficiently established that we feel a formal mathematical proof of the ap-
proach could be given. It is a result which will be particularly important in the
future development of models which include more detail about the operating
mechanisms of their components. It has already assisted in the rest of this work.

• Moving toward a less abstract model bearing a closer resemblance to the im-
plementation, we have gained significant understanding of the problems faced
in several key areas. These include

o tolerance of transient faults,

o recovery after transient errors, and

o the benefits to be gained from temporal redundancy and permuted schedul-
ing.

69

o We have presented models of the FTP consistency algorithm which include
explicit timing information in both synchronous and semi-asynchronous
models. These models include sufficient information about the communi-
cation mechanism to investigate the need for non-blocking and sacrificial
buffers. We feel that these models approach the "Synchronous replicated"
and "Asynchronous distributed" views of [1], although they still involve
significant abstraction from the way in which the processing and voting
elements operate, and the issue of establishing co-ordinated global timing
has still to be addressed in detail.

The modeling which we have completed in this area is still highly abstract, but
it provides important framework elements, and highlights those areas which
place additional emphasis on new theories and tools.

The major prospects for future work on the demonstrator application lie in the fol-
lowing areas

• Our models are still very abstract in some areas: our models of communica-
tion are relatively close to transputer style implementations, but areas such
as timing, clock synchronization and the mechanisms connecting hardware and
software could benefit from more detail. Additional information may well allow
us to relax some of our design constraints: for example our asynchronous timing
model requires large margins in the specification of time-outs and cycle lengths,
whereas slight improvements to the design we are formalizing may allow these
margins to be reduced.

• At the implementation level, more detailed models of the interaction between
software tasks is required, both in terms of specifying application timing con-
straints and especially in the relationship between communications hardware
and software.

• The interface between communication, voting, and application software sched-
ules is perhaps in greatest need of further formalization. Both this area and
more general timing and scheduling issues will require the ability to model and
distinguish systems using multi-processing on a single CPU and communications
hardware supporting a single processor, as well as the theoretically simpler case
of true multi-processor systems.

These prospects highlight some points of importance in the tool-development part
of the project, in particular in the area of prioritization (as noted in Section 5.1.1)
and possibly in assisting the modeling the interaction between varied hardware and
software environments.

70

References

[1] N.A. Brock. Real-Time Scheduler: Natural Language Problem Statement. Tech-
nical report, Charles Stark Draper Laboratory, Inc., 1994. Deliverable D2.1 of
SBIR N00014-93-C-0213, in [6].

[2] Neil A. Brock and Sharon L. Donald. Discussion of Errors and Their Effects on
a HRT Scheduler. Technical report, The Charles Stark Draper Laboratory, Inc.,
1994. Deliverable to SBIR N00014-93-C-0213, in [7].

[3] Formal Systems (Europe) Ltd, 3 Alfred St, Oxford 0X1 4EH, UK. Failures-
Divergences Refinement (FDR), User Manual and Tutorial, 1994. Contact
D.M. Jackson; Tel: [+44] (0)1865 728460, Fax [+44] (0)1865 201114, E-mail:
daveOfsei.com.

[4] RH.B. Gardiner and M.H. Goldsmith. Inside FDR 2. Technical report, Formal
Systems Design & Development, Inc., 1994. Adjunct to D1.2 of SBIR N00014-
93-C-0213, in [8].

[5] M.H. Goldsmith. A CSP Priority Operator for FDR 2; Prototype Software for
Discrete Real-time Extensions to FDR. Technical report, Formal Systems Design
& Development, Inc., 1994. Deliverable to SBIR N00014-93-C-0213, in [8].

[6] M.H. Goldsmith et al. N00014-93-C-0213: Second Quarterly Report. Technical
report, Formal Systems Design and Development, Inc., P.O. Box 3004, Auburn,
AL 36831-3004, 1994.

[7] M.H. Goldsmith et al. N00014-93-C-0213: Third Quarterly Report. Technical
report, Formal Systems Design and Development, Inc., P.O. Box 3004, Auburn,
AL 36831-3004, 1994.

[8] M.H. Goldsmith et al. N00014-93-C-0213: Fourth Quarterly Report. Technical
report, Formal Systems Design and Development, Inc., P.O. Box 3004, Auburn,
AL 36831-3004, 1994.

[9] David M. Jackson and M.H. Goldsmith. Specifying Task Management; Single
Processor Systems. Technical report, Formal Systems Design & Development,
Inc., 1994. Deliverables D 2.2 and D 2.3 of SBIR N00014-93-C-0213, in [7].

[10] Patrick Lincoln and John Rushby. A Formally Verified Algorithm for Interactive
Consistency Under a Hybrid Fault Model. In Proceedings of 23rd Fault-Tolerant
Computing Symposium, 1993.

71

[11] B.L. Di Vito, R.W. Butler, and J.L. Caldwell. Formal Design and Verification
of a Reliable Computing Platform For Real-Time Control - Phase 1 Results.
Technical Memorandum 102716, NASA, 1990.

A Vector-based Model for Permuted Scheduling

abstract csp: An FDR-1 model of a voter for permuted schedules

(c) Formal Systems Design & Development, Inc, 1994

Originated by: Michael Goldsmith This version:
— $Id: abstract.csp,v 2.0 1994/12/16 17:44:03 dave Del $

Define two vector operators in Standard ML: getnth returns the selected component of
a sequence, setnth sets the selected component of the sequence to be the value specified.

Declare the function names as non-CSP definitions
pragma opaque "ML" getnth
pragma opaque "ML" setnth

code for the function implementations
local

fun MLgetnth (0, a::x) = a
I MLgetnth (n, _::x) = MLgetnth (n-1, x)
I MLgetnth _ = raise SemanticError

("getnth: index too large")
in
fun CSPgetnth [n, s] =

let val MLs = CheckSeq s
val MLn = NumberOf (CheckAtom n)

in MLgetnth (MLn, MLs)

end
I CSPgetnth x = raise TypeError

("getnth: expected <number,sequence>,"

" " found "
~ print_expression (EXPseqcomp (x, [])))

end;

Include the ML source
pragma inline "ML"

pragma inline "ML"

pragma inline "ML"

pragma inline "ML"

pragma inline "ML"
pragma inline "ML"

pragma inline "ML"

pragma inline "ML"

pragma inline "ML"

pragma inline "ML"

pragma inline "ML"

pragma inline "ML"

pragma inline "ML"

pragma inline "ML"

pragma inline "ML"

pragma inline "ML"

72

The following definition includes a call to print merely as development aid.
pragma inline "ML" local
pragma inline "ML" fun revonto (a::x, y) = revonto (x, a::y)

| revonto (_, y) =
(print "\nSTATE ";

map(print o print_expression)y;
print "\n"; y)

fun MLsetnth (0, _::x, v, y) = revonto (y, v:
| MLsetnth (n, a::x, v, y) =

MLsetnth (n-1, x, v, a::y)
| MLsetnth _ = raise SemanticError

("setnth: index too large")

pragma inline "ML"
pragma inline "ML"
pragma inline "ML"

pragma inline "ML"
pragma inline "ML"
pragma inline "ML"
pragma inline "ML"
pragma inline "ML"
pragma inline "ML"
pragma inline "ML"
pragma inline "ML"

pragma inline "ML"
pragma inline "ML"
pragma inline "ML"
pragma inline "ML"
pragma inline
pragma inline
pragma inline
pragma inline
pragma inline
pragma inline

:x)

in

'ML"
'ML"
'ML"
'ML"
'ML"
'ML"

fun CSPsetnth [n, s, v] =
let val MLs = CheckSeq s

val MLn = NumberOf (CheckAtom n)

val _ = NumberOf (CheckAtom v)
in EXPseqcomp (MLsetnth (MLn, MLs, v, []), [])

end
I CSPsetnth x = raise TypeError

("setnth: expected number,sequence,number>,"

* " found "
~ print_expression (EXPseqcomp (x, [])));

end;

Declare the relationship between the CSP names and the ML functions

pragma inline "ML" DefineMLFunction "getnth" CSPgetnth;
pragma inline "ML" DefineMLFunction "setnth" CSPsetnth;

The following sets and channels are equivalent to those in timing, csp

TASKS = { 0, 1, 2, 3, 4 }
BOOL = { true, false }
pragma channel task : TASKS . BOOL
pragma channel pass : TASKS
pragma channel work, sync

The communication model is now a single process with a vector argument
COMMS = JUDGE (<2,2,2,2,2>)

73

Initially this process accepts a termination signal, and if it is valid, moves to the DSZ
state to decrement the appropriate value. If the execution was invalid, it performs the
associated work (actually an abstraction of the decision process), and remains ready
to accept another termination. Note that inputs are not accepted while work is being
offered: this captures the prioritization of the "internal" action work over external
communication

JUDGE (s) =
task ? i ? b ->

if b
then DSZ (s, i, getnth (i, s))
else work -> JUDGE (s)

This process examines the count relating to task i and performs appropraite action. If
the recent termination we the first successful one, the counter is decremented (without
doing any work for the comparison), and the JUDGE returns to its initial state. If
one previous successful execution had preceded this one, a comparison is performed,
and the successful acquisition of good data is signalled on pass. Further successful ex-
ecutions are ignored (after the comparison, which is necessary to detect the occurence
of a transient error, although not to determine the actual value required).

DSZ (s, i, si) =
if si == 2
then JUDGE (setnth (i, s, 1))

else if si == 1
then work -> pass ! i -> FRAME (setnth (i, s, 0))
else work -> JUDGE (s)

When a pass signal has been indicated, we examine the new values of all the counters
in s to see if they are now all zero. (This uses the FDR set operator.) If this is the case,
further tasks are ignored after a comparison, and the end-of-frame synchronization
may occur. Otherwise the sub-system returns to its initial state.

FRAME (s) =
if set (s) == { 0 }
then (sync -> COMMS) [] task ? any -> work -> FRAME (s)

else JUDGE (s)

This is Release 3.0 of this document, last modified by Michael Goldsmith at 20:35:05 GMT on April
25, 1995.

74

Verifying Timing Properties of Static
Schedulers

David Jackson
Formal Systems

April 25, 1995

Summary

This document describes the process of modelling a general class of real-time
programs with cyclic, non-preemptive schedulers. We show that a large number
of the requirements placed on these systems in real embedded-system applica-
tions can be captured as instances of a few general formal specifications. We
also describe models of these programs in CSP which have the property that
relatively few parameters need to be altered to reflect a change in schedule,
most of the model being determined by the software architecture adopted.

Such models and requirements are ideally suited to mechanical verification,
which can be carried out relatively inexpensively. We suggest a modification
to the style of earlier deadline specifications in CSP which allows the "degree"
of failure to be judged when a violation of the specification is identified in
this way. In an extension to other work on this topic, we describe how the
mechanical verification process can yield quantitative information about timing
margins and processor utilization in addition to the qualitative verification of
satisfaction.

We give an example based on a simplified, but realistic, automotive engine
management system.

1 Background

A common feature of a number of embedded systems of which Formal Systems has
experience is a scheduling scheme based on a statically determined cycle of task exe-
cutions. These schedulers, and a number of more flexible schemes based on relatively

This is a working paper (Wl.4.1) in the Office of Naval Research SBIR Project N00014-93-C-0213
Embedded Transputer-based System Design.

slow or constrained dynamic variation of a task cycle, are particularly amenable to
formal and mechanical analysis. This document describes the specification of such
systems in CSP, and their verification using the FDR tool.

As discussed in a number of documents relating to the Transputer Fault-Tolerant
Processor ([1]), the time-critical tasks of an embedded system are commonly orga-
nized into a series of frames (of fixed duration), each of which is executed in a longer
cycle. For example, if a control system requires that certain outputs are updated
every 2ms, while other status information need only be computed every 10ms, we
might structure the execution schedule as follows: The critical performance criteria

Minor cycle

2ms 2ms 2ms 2ms 2ms

10ms

Major cycle

of embedded systems are principally defined by the points are which external inputs
are monitored and external outputs are provided; the importance of such externally
observed behavior makes such systems obvious candidates for methods (such as the
CSP formalism) which treat the relationships between external events as paramount.
This document will examine the type of constraint which might appear in the require-
ments specification of such a system, the structures which a real-time program might
use to address them, and the verification of these properties using the FDR tool.

2 A Motivating Example

As an example of the type of system which we plan to analyze, consider an automotive
Engine Management System (EMS). We will assume that this micro-processor system
is responsible for monitoring a range of inputs from the engine, vehicle, and driver,
including

• Crankshaft position (° from TDC)

• Crankshaft speed (averaged over some interval)

• Desired engine speed (from driver or transmission control)

• Fuel injector pressure (to check correct function)

76

• Engine cooling system temperature

and perhaps also

• Engine oil temperature

• Exhaust composition (Og %)

• etc.

It will produce outputs including

• Injector actuation signals

• Ignition timing signals (advance/retard)

• Fuel pump control signal

• Cooling fan start/stop signal

• Tachometer reading (for driver)

• Warning indications

We expect that some signals (Injector control) must be generated at a relatively high
frequency (1 KHz) and that the majority of the others are required less frequently.
Note that we are more concerned with providing examples of the features of a range
of systems than with providing a realistic model of a particular application.

3 Requirements

Requirements are placed on an embedded system by the external engineering dis-
ciplines governing the application. A system will typically be required to provide
outputs at a specified minimum frequency (possibly subject to constraints on the
maximum rate of update, and on the regularity of the outputs). These outputs will
be required to reflect a sufficiently 'fresh' set of input values. The majority of likely
classes of detailed timing requirements arise from these considerations.

3.1 Safety Properties
The majority of properties which do not relate directly to timing are "safety proper-
ties" . These define behaviors of the system which the controller should never allow.
An example might be that

The EMS should never allow the engine to start while the demanded speed
is zero (i.e. the ignition is turned off).

77

Note that this class of excluded behavior might be sufficient to prevent the system
entering a possibly hazardous condition, but that taking action to rectify a potential
danger is usually a timing (or liveness) condition rather than a safety property:

When demanded speed becomes zero, the EMS should bring the engine
to a halt in no more than Is.

3.2 Iteration Rates

The simplest timing requirements are those which state that particular functions
(such as providing an output, or updating a state variable) are executed regularly.
Such requirements can express a variety of forms of constraint:

• Repetition at a precise period

•

•

Repeated execution within a specified interval of a series of precise intervals.
(Placing bounds on the maximum total deviation from an ideal scheduler.)

Repetition such that the time interval between executions lies within specified
bounds. (Placing a constraint on the rate of deviation from the ideal, but not
the actual maxmimum displacement.)

Long-term bounds on average execution rates, placing limits on the number of
executions which must occur over some specified time, but not on the actual
times of occurrence.

This classification has previously been observed in [7].
Requirements of this form provide one of the most important inputs to the design

of a scheduler, and verifying these properties constitutes an important "sanity check"
on a proposed design.

3.3 Sequence Timing

A more sophisticated and more stringent requirement is necessary to capture overall
response time conditions which are inevitable in embedded systems design. These
typically take the form of constraints placed on particular sequences of task executions
calls to ensure that the response to a particular input change is made in a timely
fashion.

A typical requirement of this form will include a "trigger" task, which is responsi-
ble for detecting some input condition, a list of subsequent tasks each of which derives
a value from values provided by previous tasks, and a final task which generates the
output. An associated time bound will define the maximum allowable delay between
input and output, and is thus a maximum bound on the time from the start of the

78

execution of the first procedure to the completion of the last specified. Any number
of other operations could theoretically intervene, and several such conditions, or even
several instances of the same condition, can be active at once.

We can model such specifications by considering just the execution of the specified
tasks and the passage of time. Suppose we construct a specification process (perhaps
modelling an observer watching the system) as follows. The specification process will
allow watch for the execution of the first (triggering) task in the sequence, and start
a counter when this is observed. It will then wait for each of the required subsequent
tasks to be executed (ignoring any irrelevant executions). If the specified execution
sequence is completed before the counter reaches the limit, the specification simply
returns to its inactive state. If the counter reaches the limit before all the desired
executions have completed, the observer should indicicate that the process violates
the specification. In the CSP theory, we can actually use such an "observer" as a
formal model of the behavior which the system should be permitted to perform. If
all the system's behaviors are permitted by the observer, the requirement is satisfied;
if not, the system is unacceptable.

We will write the property which enforces this limit as

WITHIN (trigger, limit, actions)

where trigger is the name of the first procedure in the thread, limit is the time limit
permitted for the thread and actions is a sequence of tasks which must be executed,
in order, within the given interval. For example, to specify that every change in
demanded engine speed is reflected in the calculation of ignition timing within 10ms
we might have the condition

WITHIN (ReadDemand, 10, (ValidateDemand, Ignition Advance, Drivelgnition))

In this case we are insisting that every call to ReadDemand is followed within an inter-
val of 10ms by the procedures ValidateDemand, Ignition Advance, and Drivelgnition,
in that order.

The description of the specification above captures the required behavior after
a single triggering task. Provided that the initial task does not also form part of
the subsequent action, we can allow for overlapping conditions simply by combining
several copies of the basic specification process in parallel.

3.4 Conditional Requirements

Many practical systems will be sufficiently complex to need requirements which are
enforced only under certain conditions. For example, a controller would probably not
need to respond rapidly to inputs if it were in a start-up or self-test mode in which
the plant being controlled were guaranteed to be inactive.

79

This type of requirement can be validated in a number of ways. A simple approach
is to explore the behavior of the system in an environment such that only modes in
which specific conditions must hold are entered; this may greatly simplify the analysis
(whether this is performed by hand or mechanically), and give a significant confidence
in the correctness of the schedule. Obviously, however, such partial analysis cannot,
in general, be applied to give a formal guarantee of complete correctness.

To establish a formal property, the requirements must relaxed explicitly. Typically
the result will be conditional statement such as

If the engine is currently running (i.e. speed > lOOrpm), the EMS should
respond to an increase in demanded speed within 10ms.

We should note that significant difficulties have been observed in some cases in defin-
ing exactly when informally specified conditions like the one above actually apply: if
the engine speed drops below lOOrpm 2ms after a demanded increase in speed, is the
time limit to apply or not?

3.5 Quantitative Results

The final type of requirements which we might consider as having a direct impact on
scheduler correctness are those which place quantitative bounds on the satisfaction of
particular deadlines, or on the overall utilization of the system by time-critical tasks.

It is common practice, for example, to insist that a specified proportion of pro-
cessor time remains free for non-time critical tasks and for possible expansion. (The
proportion being higher for early releases of a system than for revised software issues.)
Similar considerations, coupled with the possibility of variations in clock frequency
and unpredictability in interrupt and 10 latency, make it desirable to establish similar
margins on other timing constraints.

These conditions are not necessarily to be strictly enforced, however, and thus
it can be useful to weaken the original requirement and then measure the relevant
timing parameters, such as the minimum delay between a set of real-time tasks com-
pleting and the next task being scheduled (for processor slack time) or the interval
between the completion of a sequence of desired actions and the latest time at which
a particular requirement would have allowed this completion. We can achieve this by
associating quantitative information with the specification which enforces the condi-
tion, as discussed in Section 5.6 below.

4 Structure of Embedded Programs

Programs for embedded systems of the type we are considering are commonly imple-
mented in a distributed style: the software is structured as a series of distinct tasks,
whose execution is triggered by the scheduler.

80

Inter-task communication is usually implemented by the use of shared variables.
As only a single task is executing at any instant, access control is typically not required
for these variables1. Input and output activities are implemented as tasks which are
scheduled in the same way as computation, although it is common practice to arrange
that these tasks are executed in close synchronization with a system clock interrupt
(by placing them early in each cycle, for example). Failure to make this restriction
can result in significant difficulty in ensuring reliable communication, and can produce
unacceptable "jitter" in the timing of inputs and outputs.

The scheduler is responsible for executing each task in the system in an appropriate
sequence and at specified times. It is common for the sequencing contraints to be
represented by a static list of tasks to be executed. A variety of execution rates can
be permitted by marking "slower" tasks as being executed only in some cycles of the
fastest rate clock, but this scheme does not extend to situations where a low-frequency
task may be longer than the available execution time in a high-frequency cycle - in
this case, the high-frequency tasks must be able to preempt the low frequency one,
and a more sophisticated schedule must be used.

Because of the difficulties involved in preemptive scheduling, it is normally avoided
in embedded systems: long low-frequency tasks can be broken in to smaller sub-tasks
if required. In this case, a single sequence of tasks may be sufficient to represent the
desired operators. The scheduler maintains a counter of the current position of the
(highest-frequency) cycle in the (lowest-frequency) series. Tasks are marked with the
values of this count for which they are actually active. For example a system with
three tasks scheduled harmonically every at frequencies of 1, 2, and 4 Hz might be
represented by the following table:

Task Cycles
A
B
C

0,1,2,3
0, 2,
0

This scheme is simple and easy to implement, but does have a minor potential
disadvantage: the order of execution of tasks within a cycle is fixed. For many
applications such an assumption is reasonable, as we might expect higher-frequency
tasks to require a more stable timing pattern and a lower latency (between the cycle
starting and the task executing). If, for some reason, this is not appropriate, we might
cast the schedule as a sequence of execution sequences (in the manner of [7]). For the
example above we may need to permute tasks A and B, resulting in the following:

xThe scheduling of inter-processor communication is, of course, the primary issue discussed else-
where in this project [6]

81

Cycle Tasks
0
1
2
3

A, B, C
A
B, A
A

The final complexity to be addressed is the use of application data to change the
schedule decisions which are made. Typically, the effect of the application on the
scheduler will be restricted, perhaps to the selection of a scheduling mode or some
other variable with a restricted domain. If the dependency of a task on such state
data is orthogonal to its timing, we can simply express this dependency separately:

Task Mode
Stationary Accelerate Decelerate

A / / /

B / /

C /

If the relationship between timing and system operating state is not orthogonal,
we might either (a) provide separate scheduler data for each processor state, or (b)
provide different task identities which actually perform the same functional task, but
in different circumstances. For example, if task B were required to execute in cycles
0 and 2 when accelerating, but 1 and 3 when decelerating we might introduce a
"placeholder" B' which actually performs the same task as B:

Task Cycles Mode
Stationary Accelerate Decelerate

A 0,1,2,3 / / /

B 0, 2, /

B' 1, 3, /

C 0 /

The assumption that B' and B are actually equivalent can be formally represented in
a model of the system by renaming any event relating to the execution of B' into the
corresponding action of B.

5 Formal Specifications

This section is intended to give formal CSP characterizations of the proerties discussed
earlier. Our specifications will be based on the usual notion of trace refinement:
we give, as a formal description of the property we require, a CSP program which
allows all the sequences of events we wish to consider as valid. A scheduling system
will satisfy our requirements if all the possible behaviors of the system model are
permitted by the relevant specification process.

82

5.1 Observable events

Our correctness criteria concern the passage of time and the execution of software
tasks. We will therefore assume that the following events may be used in representing
the behavior of our system:

X indicates the passage of one unit of time. Our time measurement is discrete, but
to investigate the effects of this approximation we can vary the actual units
used. To allow a range to be calculated simply and using the integer arithmetic
provided by the FDR tool, figures in the model may be written as multiples of
some smaller interval; this will allow us to change the accuracy of our model
simply be changing a parameter in the scaling function.

exec.i represents the start of execution of a task i. We do not need to model the
completion of a task explicitly if it can be inferred to sufficient accuracy for our
needs from the start of the next task.

i indicates the start of cycle of scheduler execution, i events are assumed to occur at
intervals corresponding to the fastest execution period required by a program.
In implementation terms, i might represent a timer interrupt.

5.2 Safety Properties
These form the largest "traditional" class of trace specifications. Note that in order to
capture the relationship between scheduling decisions and external events, the actions
we observe must be augmented by the events in question. For example, our earlier
requirement

The EMS should never allow the engine to start while the demanded speed
is zero (i.e. the ignition is turned off).

can be expressed by the following process (assuming that demanded speed is available
frequently on channel demand):

— Assuming the initial state is potentially unsafe,
Safetylnitial = SafetyUnsafe

— This process monitors the condition when the demanded
— speed is non-zero. It .prohibits, exec.start.
SafetyUnsafe = demand ? x ->

if x==0 then SafetySafe else SafetyUnsafe

— This process monitors the condition when the demanded
— speed is zero. It _allows_ exec.start.

83

SafetySafe =
demand ? x -> (if x==0 then SafetySafe

else SafetyUnsafe)
[] exec.start -> SafetySafe

We then require that our system refines Safety Initial.

5.3 Iteration Rates
The specification of periodic execution has also been the subject of significant work,
including work on this project citefunspec. We include these "standard" definitions
here for completeness.

If an exact bound is placed on the time between executions, we have

PERIODICCi, T) = l~l t : {0..T-1} 0 PERIOD(i,T,t)

where i is a task and T is the time required between successive executions. The non-
determinsitic choice serves to allow an arbitary starting point to be chosen within the
cycle. Once this point is established, the process is deterministic:

PERIOD(i,T,n) = if n==0 then
exec . i -> PERIOD(a,T,T)
else tock -> PERIOD(a,T,n-l)

This keeps a count, n of the time allowed until the next occurrence of execed.a. When
the count is zero, it will only allow this execution action to occur; when n is non-zero,
the process will allow time to pass (represented by the tock action) and decrement
the count accordingly.

In practice this PERIODIC condition is too strong and our specification will allow
some variation in execution time. If the requirement places a bound on the allowed
deviation or the actual execution and the desired one, we will call it a bounded drift
requirement, and capture it with the following specification process.

BLURRED(i) = l"l n : {L_i .. U_i} Q BLUR(i.n)

BLUR(i,n) =
(if n < T_i + U_i then tock -> BLUR(i,n+l) else STOP)

[]
(if T_i + L_i <= n then exec.t.i -> BLUR(i,n-T_i)

else STOP)

The only information that need actually be retained from the history of the process
before the last occurrence of the event is the phase shift at which it occurred; this

84

"drift" (the parameter n) will always lie within the interval [Li, U{], and initially we
allow it to take any such value.

If the requirement places bounds on the interval between successive executions
of a task, rather than on the absolute time of occurrence, we will refer to it as a
bounded rate of drift condition. The process here is remarkably similar that above;
the difference lies in that after the task has been scheduled, its drift is forgotten and
the interval counter reinitialized to zero:

REPEATING(i) = I"I n : {0 .. Tmax.i} 9 REPEAT(i,n)

REPEAT(i,n) =
(if n < Tmax.i then tock -> REPEAT(i,n+l) else STOP)

[]
(if Tmin.i <= n then exec.t.i -> REPEAT(i,0) else STOP)

Once again the initialization condition can be altered by restricting the range of the
non-determinism.

In the weakest form of iteration rate condition, a bound [Nmirii... NmaXi] is placed
on the number of executions in some time interval TinU. We need to keep a record
of the rate of execution of task i over the last TinU time units. This could be held
as an integral part of the state of the specification process, as a sequence parameter
for example, and the process could count the number of % executions in the sequence
before deciding if an execution was permissible (or necessary). Alternatively, we might
keep the history in a "delay-line" process, and store the sum as a separate state item.
In the following definition, channels delin and delout are assumed to communicate
with such a process.

CNTRL(i,sum,curr) =
(if Nmin_i <= sum

then tock -> delin ! curr ->
delout ? v -> CNTRL(i,sum-v,0)

else STOP)
[]
(if sum < Nmax_i

then exec.t.i -> CNTRL(i,sum+l,curr+l) else STOP)

The initialization of this system is quite important: the initial value of sum should
equal the sum of the slots in the initial value of the delay-line, and that value should,
itself, be between Nmini and Nmaxi, otherwise CNTRL will attempt to bring the
execution rate back into line initially (possibly stopping time in the process).

To augment these general specifications, we can employ a valuable practical insight
which has arisen in recent work: when checking a refinement automatically, it is usual
to insist that the shortest trace leading to an error is returned if the the refinment

85

fails to hold. In the context of this type of timing requirement, this means that
an error is reported when the execution of a task becomes overdue (i.e. when the
time limit expires). It is perhaps more useful, however, to give some indication of
the interval between a task becoming overdue and its actual execution time. (This
is particularly the case with less-critical tasks, where some failure to meet deadlines
may be permitted.) Specifications in the above style can provide this information if
we change their action on the detection of an error. Most of the processes have a
similar form to the following

REPEAT(i,n) =
(if n < Tmax.i then tock -> REPEAT(i,n+l) else STOP)

[]
(if Tmin.i <= n then exec.t.i -> REPEAT(i,0) else STOP)

If the time limit is exceeded, this process will not let \ events occur, and a delinquent
implementation will typically fail to refine this (because it will allow x but not the
scheduling exec, action). If we rewrote the specification including

REPEAT(i,n) =
(if n < Tmax.i then tock -> REPEAT(i,n+l) else IDLE)

[]
(if Tmin.i <= n then exec.t.i -> REPEAT(i.O) else STOP)

where

IDLE = tock -> IDLE

then the refinment would not fail until the implmentation was willing to perform
the exec, action (which the specification would no longer permit). The number of x
events which had elapsed since the deadline now provides a measure of the time delay
in meeting the deadline.

We should perhaps note that this simple form actually permits a refinement to
hold if the implementation never schedules the task being considered. A stronger
condition could employ a scheme like the following:

REPEAT(i,n) =
(if n < Tmax.i then tock -> REPEAT(i,n+l)

else IDLEF0R(2 * Tmax.i))

□
(if Tmin.i <= n then exec.t.i -> REPEAT(i.O) else STOP)

where

IDLEFOR(n) = if 0 <= n then tock -> IDLEFOR(n-l) else STOP

86

This specification will prohibit any behavior with more than 2TmaXi x events after a
deadline has been missed, as well as attempts to execute the task once the deadline has
expired. Checking refinement of such a specification can have one of three outcomes:

• Successful refinement, indicating that the deadline is always met,

• A failure resulting from the implementation allowing an exec, event which the
specification did not permit. This indicates that a deadline has been missed,
and allows the amount by which it was missed to be determined from the trace
leading to the error.

• A failure resulting from the implementation allowing a clock tick (x) which the
specification did not permit. This indicates that the implementation missed the
deadline by more than the amount specified (2TmaX{ in the above example).

5.4 Sequence Timing

The description of timing requirements applicable to sequences of task executions
given in Section 3.3 was already phrased in terms of the actions which might be seen
by an observer. To encode these requirements in a form suitable for verification by
refinement, we simply need to express such a non-determinsitic observer in CSP.

We first define some processes used in constructing our specifications. Each spec-
ification will consist of two parts, one which keeps track of the elapsed time and
another to monitor the calls to specified procedures inorder. reset is the event used
by the latter to inform the timer that the thread has been successfully executed.
synch is a further synchronization introduced to ensure that the processes remain "in
step".

channel reset, synch

The events irrelevant and therest are used in the following definitions as short-hand
for procedure calls which do not satisfy the thread.

channel irrelevant, therest

Limit is the timer half of the specification - when proecdure trig is called, it enters
the Bound state and states counting down the number of tock events allowed by the
limit.

Limit(trig,count) = tock -> Limit(trig,count)
[]
execed.trig -> Bound(trig,count,count)

therest -> Limit(trig,count)

87

Bound decrements the timer value whenever tock is observed, and simply ignores
procedure calls. When a reset occurs, it makes a further synchronization on channel
margin (this is used in later specifications to allow timing margins to be examined),
and then resets to its initial state. If the time limit is exceeded, further tock events are
not permitted. (This will be visible in practice as a failure of the refinement check.)

Bound(trig,count,curr) =
(if 0 < curr then tock -> Bound(trig,count,curr-1)

else STOP)

[]
reset -> (synch -> Limit(trig,count)

[] margin ! MarginQuantum * (curr/MarginQuantum) ->
synch -> Limit(trig,count))

[] therest -> Bound(trig,count,curr)
[] execed ! trig -> Bound(trig,count,curr)

The basic unit used to build the part of the specification which monitors procedure
executions is Await(f,X). This will perform any event from the set X, and either
terminate successfully if the event is /, or remain in the same state if not.

Await(f,X) =
([] x : X @ x -> if x == f then SKIP else Await(f,X))

The following definition shows how these elements may be combined. We define
a process (WithinEg) which specifies that each of the tasks in actions must occur (in
order) within Tlim of any execution of trigger.

We instantiate a copy of the Limit process together with a sequence of Await
processes which check for each required procedure in turn. This sequence terminates
(and loops back to its initial state) only when all the procedures have been called in
order.

WithinEg = (Limit(trigger,Tlim)
[[therest <- exec.head(actions)]]

[| union({| exec.i I i<-{trigger,head(actions)}|},
{| reset,synch |}) |]

while(rseq(y,<exec.trigger>~
<execed.i I i<-actions>~
<reset>,

if y == reset then
[] x:{exec.i,irrelevant I

i<-union({trigger},set(actions))} Q
x -> reset -> synch -> SKIP

else

88

Await(y, union({irrelevant},
{ execed.i I i<-union({trigger},set(actions)) }))))

) \ {reset,synch}

The reset and synch events are not intended to be part of the specification, and thus
are hidden from the environment.

To use such a specification, we take a model of our system, and map task ex-
ecutions which do not concern the particular requirement to the irrelevant value
introduced above. We may then hide any other events which do not directly appear
in our specification, such as the cycle event marking the beginning of a frame.

TestEg =
(System [[execed.i <- irrelevant

I i <- diff(TASKID,
union({trigger},set(actions)))]])

\ {| cycle |}

The condition we require is

assert WithinEg [T= TestEg

We should note that the above specification process makes two assumptions:

• No more than on instance of any sequence is "active" at any one time, and,

• the triggering event of a sequence does not also occur in the list of triggered
actions.

The first of these is particularly restrictive, but is easily relaxed by expanding our
specification. Rather than simply comparing the implementation to a single process
like WithinEg, we may compose several specifications in such a way that they syn-
chronize on timing signals and task execution other than the trigger, but interleave
on the triggering event itself. This allows successive occurrences of the triggering task
to start different counter processes, and enforces the timing condition on each. In
practice, the number of overlapping threads of this sort seems not to be large, and
thus we do not need to compose many concurrent observation processes.

The second restriction appears less of a practical problem, and could be similarly
removed, although possibly at the cost of adding a further parallel process to control
the distribution of execution signals.

5.5 Conditional Requirements

Where a condition is required to be enforced in a limited range of system stages, it
is obviously necessary to be able to identify when the process enters or leaves such

89

states. This will require that our implementation model be extended to offer addi-
tional communications specifying the critical states. In many cases, the information
will be easy to identify in a straightforward model of the software; the model of a
task which examines operating conditions and changes the system mode accordingly
can easily be extended to signal such changes on an extra channel. An alternative ap-
proach might add a monitor in parallel with the implementation (or the specification)
to detect and signal changes in more complex conditions.

Suppose, then, that this enables us to provide a model which engages in an event
from set Ri when entering a state where some trace condition should be enforced, and
an event from set R0 when leaving such states. If the requirement would normally be
enforced by a process SPEC, we may construct a process which allows behaviors of
SPEC between Ro and Ro, but arbitrary traces otherwise using the CSP interrupt
operator as follows.

SPEC = ([] x:R_I @ x -> SPECactive) []
([] x:R_0 @ x -> SPECinactive)

SPECactive = (SPEC Ml RUN(R_D) A
([] x:R_0 Q x -> SPECinactive)

SPECinactive = RUN(diff(SIGMA,R-D) A
([] x:R_I Q x -> SPECactive)

(This assumes that an event from Ri U Ro will precede any other to determine the
initial state - other initial assumption are clearly trivial to encode.)

The above definition assumes that the SPEC condition is independent of Rj U
R0 and may be re-initialized whenever it becomes necessary to enforce it. Other
conditions can be captured by, for example, maintaining some separate specification
state in a process placed in parallel with SPEC, or placing SPEC in parallel with
a process which will only allow it to progress between Ri events and Ro events, and
otherwise permits the implementation arbitary trace behavior2.

5.6 Quantitative Results

Our specification for a sequence timing constraint is constructed as an observer, mon-
itoring the tasks which are executed and maintaining a count of the time elapsed since
the start of a sequence. The value of this counter at the point where the execution of
the last task in the sequence is observed may clearly be used to give a measure of the
margin remaining before the deadline in a particular point in the execution. Every

2This will obviously entail renaming the entire alphabet of SPEC in order to interleave two
alternative behaviors, and renaming them back to the implementation view at the outermost level.

90

State of the specification at in which the timing requirement has just been satisfied
will have such a value associateed with it. Thus if we can identify the set of states
which our "observer" can reach while observing our system, we can find the set of
possible margin values, and in particular we can identify the least.

When we prove that a refinement holds using FDR, the tool builds a set of pairs
relating each state in the implementation of our system to the corresponding states
of the specification which it satisfies. The set of states which the observer can reach,
therefore, is simply the set of states which are related to one or more states of the
implementation by a successful FDR check. (If the check is not successful, the com-
plete state space will not have been explored, and consequently the approach we are
outlining does not hold - we might not expect to be able to measure a safety margin
in an unsafe system!) A small modification to the refinement-checking program used
in FDR easily allows us to determine which states of the specification were visited
in the course of demonstrating a successful traces refinement, but this information is
initially in a form which refers only to the observable behavior of the specification,
and in particular it refers to a process which has been compressed in the course of
normalization3.

We thus must solve two technical difficulties to use the technique in practice:
we must prevent FDR's compression algorithm from merging states with the same
observable sequences of behavior but different time margins, and we must provide a
way of encoding this timing information in a way which allows it to be retrieved from
the compressed machine. A simple matter of CSP programming addresses both issues:
we add an additional communication channel, margin say, to the specification process,
and modify the observer to permit an output of the remaining time whenever the last
event in a sequence is observed. We do not make this event compulsory, however,
and its occurence need make no change to subsequent behavior. This addition does
not prevent any process which previously satisfied the specification from continuing
to do so, because the additional communication is always merely a choice which the
implementation can chose to ignore4. As the only additional events are confined to a
channel whose name can be chosen so as not to appear in the implementation model,
this change equally does not accept any otherwise prohibited implementations5.

The additional possible outputs of distinct values prevent the normalization from
identifying states with differing margins (although the effect on the size of the whole
specification will only be additive in the case that immediately following the comple-

3 Version 1 of FDR uses a strong bisimulation relationship to factor the pre-normal form. FDR 2
incorporates a wide range of semantic compressions.

4The nature of the choice (determinsitic or nondeterministic) is irrelevant for proofs of traces
refinement.

5Formally, we insist that the new specification (Spec1) relates to the old as follows: Spec =T

Spec' \ {margin} and so Spec QT P exactly when Spec' \ {margin} CT P, and thus as P \
{margin} = P, Spec CT P when Spec' CT P.

91

tion of a sequence the observer was to return to a "reset" state), and also provide a
convenient means of presenting the state information to the user. The modified FDR
returns the union of all the possible initial events of states visited by the specifica-
tion. A timing margin of t was possible exactly when margin.t appears in this set.
Note that we must use the set of possible actions from each specification state, as we
guarantee that a transition margin.t is never performed by the implementation, and
thus never explored further by the refinement engine.

Let us now consider the similar problem of measuring processor slack time in
cyclicly scheduled system. The tasks associated with each frame will be executed
when the frame starts, and assuming that our design is adequate, these will terminate
some time before the next frame is due to start6. In practice, the time between one
frame and the next will be occupied with non-critial background tasks. In a similar
manner, we may add to our formal model a task which is active over this interval and
which simply counts the time periods which elapse until the next frame start signal
is actually generated - it is usually straightforward to do this in a way which does
not change the behavior of the overall system with respect to the original interface of
the model. If this task is able communicate these time values to the environment on
some channel, the possible values of processor slack time can simply be extracted by
examining all possible behaviors and noting the values transmitted on this channel.
As this channel is an artifact of our modelling rather than a physical entity, our
specifications can simply be expanded to ignore it:

SPEC = SPEC HI CHAOS{slack}

If a finite-state process communicates only finite ranges of values over a finite set of
channels, the set of events which are actually possible can be calculated by searching
the space of possible behaviors - modified versions of FDR and a simple program
based on the FDR 2 library have already been constructed for this task.

6 Modelling the System

As noted above, the programs we consider consist of a number of top level tasks
executed in sequence by a scheduler procedure which is itself executed at regular
intervals by the run-time system. Each excution of the scheduling procedure is a
frame. The entire scheduling sequence will typically repeat at a somewhat lower
frequency - each such complete set of frames will be termed a cycle. Less critical
tasks may, in turn, be run according to a sub-schedule only once in a number of
cycles (the possibility of abstracting from the details of these infrequent tasks will
be discusse below. Additional non-time critical (background) tasks may in turn be

6Assuming, for the present, that our real-time tasks are not pre-emptable.

92

executed when the processor is idle - these tasks are not considered further in this

report.
The major components of the formal model represent functions which can be

identified in the actual software structure of such a program:

• A timer process which relates the occurrence of i events (indicating the start
of a frame) to the physical passage of time, and thus is an analogue of the
hardware timer and run-time system in an actual system. Our formal model
will simply count the number of time intervals which are permitted before the
next interrupt, and allow time to pass (if this number is greater than zero), or
signals the interrupt (if the number is equal to zero). The following definition
uses tock to represent the passage of time, and cycle to represent the interrupt.

Timer(n) = Timing(n,0)

Timing(n,m) = if m == 0
then cycle -> Timing(n.n)
else tock -> Timing(n,m-1)

The variable m keeps track of the time to the next interrupt, and n represents
the cycle length which is used to reset m when an interrupt actually occurs.

• A "store" process will keep track of the information which the scheduler uses
to determine control flow. This will include both scheduler specific state, such
as the frame and cycle counters, and any application-dependant data (such
knowledge of any failures observed in a fault-tolerant network, system operating
mode, etc.). Counters may be modelled simply as a process which maintains
a number which is incremented periodically and which may be read by the
scheduler when required. In modelling other state information, we may take
any conservative non-determinstic approximation to the actual system behavior
and still be assured of the validity of our analysis. Indeed, if no constraints are
placed on the systems behavior across state boundaries, an entirely arbitrary
selection of mode data will be permissible.

• The most complex process is that which represents the control flow through
the actual program. In its simplest form, this may closely resemble the proce-
dural code for the scheduler implementation, taking the form of a loop which
indexes a data table including information about each task. The actual style of
representation will be discussed below.

93

6.1 Representing task data

There appear to be two distinct possible methods of representing the task set present
on a cyclic-scheduled system, one using parallel composition, and the other effectively
sequentializing the information.

Perhaps the most natural respresentation involves defining a concurrent process for
each task, and placing all these processes in parallel with a scheduling process which
ensures that no more than one task executes at any given time. (This approach is
demonstrated in [8], for example.) A typical task might take the form

TASK(id, duration) =
exec.id -> RunningCid,duration,duration)

[]
tock -> TASK(id,duration)

Running(id,maxduration,remaining) =
if remaining == 0 then

done -> TASK(id, maxduration)
else

(done -> TASK(id, maxduration) |~|
tock -> Running(id,maxduration, remaining -1))

The task switches from idle to running on recipt of an exec signal, and executes for
a maximum of duration time units. On completion it informs the scheduler via the
done signal and returns to the idle state. Not only is this approach close to the
conceptual model used in designing the system, but it permits processes to maintain
internal state if this is desirable. For example, a task which dispatched according
to a sub-schedule could maintain a variable recording its position in that schedule,
or the model of a communication task might be permitted to assume (from external
data-rate considerations) that a buffer could not be full to its maximum extent on
two adjacent calls. As regards formal manipulation, however, this representation
does have some drawbacks; in particular the assumption that at most one process
executes at a time must be enforced external to the definition of the task set (by the
scheduler)7.

An alternative approach which makes the fact that only a single process is active
at any one time explicit is to represent the execution of tasks as a sequence of process
invocations. A typical task might now be represented

TASK(i, d) = exec ! i -> RUNNING(d)
RUNNING(n) = if n == 0

7The resulting inefficiency of state representation, and particularly the inefficient representation
of multi-way synchronization, are major deficiencies in the FDR-1 tool in this context.

94

then SKIP
else (SKIP |"| tock -> RUNNING(n-1))

The exec signal now serves only to inform the environment of teh execution of the task
(for specification purposes). When a task completes, it simply terminates successfully.
The complete task set is now represented as a sequence of tasks:

TaskSet = Task(A, 30); Task(B, 45);...; TaskSet

(Note that recursion or iteration can be used to complete the cycle at the end of
a single pass.) Additional processes may be added to the sequence to model the
interaction of sequential behavior with cycle interrupts, and to model processor slack
time (or background processing). State values, however, must be maintained by
a separate parallel process, as the CSP sequential composition operator does not
transfer internal state.

In either of the above cases, the simple task model given above can easilt be
extended to allow for conditional execution according to a value provided by a cycle
count or state variable process.

To avoid the complexity of modelling long cycles, we can abstract away from
the details of some infrequent tasks. Suppose the highest frequency tasks in our
system were executed every 5ms (the frame time), and the majority of tasks were
repeated every 50ms (i.e. every 10 frames). If one of these tasks in turn executed
a sub-schedule and invoked relatively infrequent (period Is, say) tasks, then a full
inductive proof (or mechanical analysis) would have to consider at least a possible
(1000ms/5ms =) 200 combinations. In many cases, however, the time occupied by
the infrequent tasks will be small, and we may make the conservative assumption
that every invocation of the sub-scheduling task occupies a non-determinsitic amount
of time up to the actual worst case. If this approximation can be made, we need only
consider (50ms/5ms =) 10 configurations. It may be, of course, that the schedule will
not meet all its requirements under this assumption, but we can be sure that those
it does meet certainly hold of the actual system.

7 Verification

The essence of verifying that a model of the form outlined above satisfies specifica-
tions as discussed in Section 5 is to prove that a refinement relation holds between the
CSP specification process and the implementation model. It is important to note that
although many of the requirements discussed would conventionally be thought of as
liveness properties (tasks will be executed within bounds), the addition of quantita-
tive timing constraints results in a property which can be expressed as a condition on
allowable traces, coupled with the necessary proof that the implementation does not

95

"stop time" by entering a state after which no timing events are possible or by insisting
that infinite computation occurs between timing events. We may check these latter
"well-formedness" conditions by verifying a single failures-divergence refinement:

RUN{t0ck} QFD System \ Sigma - {tock}

Once this is established, timing properties can be verified by considering only the
traces of the processes involved:

Spec QT System

Because the CSP sychnronizing parallel operator (|[X \ Y]|) can be used to represent
conjunction in the traces model, we may prove satisfaction of each of our timing
properties separately. In addition, in some circumstances we can exploit the following
law

SQTP => SQTP \[X\Y]\ Q

to "factor out" that part of our system model which enforces a particular condition
and thus simplify our analysis further.

The relationship between trace refinement and parallel composition can be ex-
poloited further if we need to verify a condition which depends on assumptions about
the environment: placing a deterministic process which enforces the condition in
parallel with our system model will constrain the space of possible behaviors ac-
cordingly. We should note, however, that in order for this approach to be valid, the
"well-formedness" property above must be shown to hold of the system and constraint
together. (Failure of this condition implies that the system and constraint are in fact
inconsistent.8)

Another application of parallel composition is the addition of details about tasks
which appear to the scheduling system as a single entity, but which implement a
sub-scheduled sequence of actions internally. For example, an adaptive filtering task
may need to be scheduled every frame (in order to accept inputs and provide filtered
output), but might contain parameters which should only be updated relatively in-
frequently. If this activity is split into two separate tasks, the overall number of items
to be run increases (consequently increasing overheads), and the abstraction of the
"filter" is broken - the updating task must have access to what could otherwise be
private data.

We may instead decide to allow the filter to perform the updates, using an internal
counter to keep track of when this is required. This internal detail need not be made
explicit in the overall model unless the updating process takes sufficiently long that
it does need to be considered in the top-level schedule, in which case, of course the

8If the constraint is deterministic.

96

abstraction must necessarily be broken. To verify that the filter process as a whole is
scheduled sufficiently often, the model need only refer to single event exec.filter. To
guarantee properties of the update, however, we may constuct a separate model of
the internal state of the filter:

Filter(n) = tock -> Filter
□

exec.filter -> if n == 0 then
exec.update -> tock -> Filter(N)

else Filter(n-l)

We include explicit reference to the timing event here in order to insist that the
exec.update is made visible to the environment as soon as it becomes available. (The
priority mechanism discussed in [2] will provide a more satisfactory solution to this
type of problem.)

We now check

Specupdate QT Filter(N)\[{exec.filter, tock}]\ System

Because the Filter process has no impact on the operation of other tasks, however,
we need not treat it as an integral part of the model, and need only include it when
testing specifications that reference exec.update.

Assuming that the refinement relations which need to be established are being ver-
ified mechically by the FDR tool, extraction of the additional information required
to give quantitative results is straightforward, and in the majority of cases causes no
significant run-time penalties. As discussed earlier, the quantitative measure associ-
ated with a specification state can be encoded in the set of events which the state may
permit (its initials). A simple modification to the FDR system allows the refinement
checking process to record which specification states were visited in the course of a
check, and to export this information at the end of a check. The current application
only requires that the union of the initials of each visited normal-form state is pro-
duced. We then may examine which events on any nominated channel were possible,
and so deduce the possible values of the timing margin (possibly rounded to some
degree). Processor slack time can be similarly extracted from the set of all events
occuring in any trace of the implementation, either by modifying the current FDR
refinement engine, or by using a specialized program using the FDR 2 libraries.

In either of these cases, of course, we are most interested in the minimum values
of the sets of (margin or slack) times returned by the modified tool. It is perhaps
interesting to notice, however, that the profile of possible timing margins does provide
some information: if a particular timing requirement is initiated by a frequent event
and ultimately discharged by the occurrence of a task which is executed less often, the
observed margins will "cluster" according to the number of frames which can elapse
between the execution of the tasks.

97

8 Summary & Implications

The overall conclusions of our work on a number of examples of the form described
here are encouraging: we have used this approach on practical problems taken from
important application areas, and have had little difficulty in obtaining useful results.
In particular, even "real-world" schedulers produced without the intention of applying
a formal model seem amenable to capture in CSP, and the models that result are not
overly complex for analysis using existing tools.

The one parameter which is most critical in determining the overall size of such
models is the time unit chosen as the basis of our discrete-time models. By using a
scaling function whenever time values appear in our models, we are able to adjust this
parameter easily and so gain confidence in the stability of our results. In our largest
example to date, the base time interval could be changed by more than an order
of magnitude without any observable change in behavior (other than the inevitable
variation in rounding).

Two features of the problem domain seem to simplify the analysis of these systems.
The first relates to the requirements placed on them: the majority of the constraints
which an embedded system is required to satisfy fall into a small number of clearly
identifiable catagories, including

• Safety and data-dependence properties (limiting the permissible sequences of
actions).

• Iteration rate and timing properties (specifying when a particular task must be
invoked).

• Task sequence constraints (specifying overall timing constraints on particular
computation sequences).

This regularity means that a great many requirements can be expressed in terms of a
few basic definitions. The ability of the theory to support compositional verification
means that checking these properties is then a mechanical task, involving little human
input once the data entry is complete.

A similar regularity appears in the model of the actual implementation of the
schedule. The structure of the model is essentially fixed by the scheduling strategy
and the architecture of the implementation. Once this has been captured, subsequent
changes to the set of tasks executed or their ordering only involve changes to the small
number of data-structures required to define a parallel or sequential set of processes
as discussed in Section 6.1. A particularly important feature is that only a single
core model of the implementation is required to verify a wide range of conditions and
extract a number of timing measures.

There are obviously some issues which must be addressed before the techniques are
suitable for wide-spread use. Principal among these are the performance limitations

98

of the current production versions of the FDR tool in systems involving large multi-
way synchronizations9, and the difficulty in maintaining models of (potentially rapidly
changing) systems without large amounts of effort by skilled personnel. Integration of
the methods described for extracting timing margins and processor utilization into the
supported interface of the tool is also obviously desirable. Extension of this style of
analysis to pre-emptive systems (following, perhaps the trivial example in [8]) would
address the concerns of a wider application group than the non-pre-emptive examples
analyzed to date.

Other areas which also deserve investigation in the long term include limiting the
effects of the use of a discrete-time model, possibly including the use of symbolic
manipulation of continuous values.

Acknowledgements

The work outlined in this paper is a summary of the development of techniques using
CSP and FDR over a number of years, and in collaboration with a number of groups.
Specific thanks are due to: Mike Bardill, Stuart Dootson and Peter Summers of Rolls-
Royce Aerospace; Eddie Williams and Paul Jackson of Rolls-Royce k Associates; Neil
Brock, Rick Harper, Beth Stamford and Sharon Donald of C.S. Draper Laboratories;
Janet Barnes of Smiths Industries; and colleagues at both Formal Systems companies.

References

[1] N.A. Brock. Real-Time Scheduler: Natural Language Problem Statement. Tech-
nical report, Charles Stark Draper Laboratory, Inc., 1994. Deliverable D2.1 of
SBIR N00014-93-C-0213, in [3].

[2] M.H. Goldsmith. A CSP Priority Operator for FDR 2; Prototype Software for
Discrete Real-time Extensions to FDR. Technical report, Formal Systems Design
& Development, Inc., 1994. Deliverable to SBIR N00014-93-C-0213, in [5].

[3] M.H. Goldsmith et al. N00014-93-C-0213: Second Quarterly Report. Technical
report, Formal Systems Design and Development, Inc., P.O. Box 3004, Auburn,
AL 36831-3004, 1994.

[4] M.H. Goldsmith et al. N00014-93-C-0213: Third Quarterly Report. Technical
report, Formal Systems Design and Development, Inc., P.O. Box 3004, Auburn,
AL 36831-3004, 1994.

9FDR 2 has been used on models of the sort described here with considerable success, as described
elsewhere.

99

[5] M.H. Goldsmith et al. N00014-93-C-0213: Fourth Quarterly Report. Technical
report, Formal Systems Design and Development, Inc., P.O. Box 3004, Auburn,
AL 36831-3004, 1994.

[6] David M. Jackson and Richard O. Chapman. Models of the Fault-Tolerant Pro-
cessor; Architecture and Verification. Technical report, Formal Systems Design &
Development, Inc., 1994. Deliverable to SBIR N00014-93-C-0213, in [5].

[7] David M. Jackson and M.H. Goldsmith. Specifying Task Management; Single
Processor Systems. Technical report, Formal Systems Design & Development,
Inc., 1994. Deliverables D 2.2 and D 2.3 of SBIR N00014-93-C-0213, in [4].

[8] D.M. Jackson and M.H. Goldsmith. Scheduler Specification in CSP: Fixed Pri-
ority Pre-emptive Example. Working Paper W.2.2.1, Formal Systems Design &
Development, Inc., April 1994. Included in Report of SBIR N00014-93-C-0213,
in [3].

A Example - Auto Engine Managment System

A.l Interfaces

The engine management system reads the following values: [Recall that we intend
the following example more as an example of task mix, timing and dependency than
as a practical system design!]

• Engine speed

Accelerator pedal angle

Cooling water temperature

• Oil temperature

• Fuel pressure

• Exhaust gas data

and provides the following outputs

This is Release 2.0 of this document, last modified by Michael Goldsmith at 20:34:42 GMT on April
25, 1995.
This is Release 2.0 of this and the following sections, last modified by Michael Goldsmith at
20:37:41 GMT on April 25, 1995.

•

•

100

• Injector timing required

• Ignition timing required

• Fuel pump drive

• Water pump drive

• Tachometer drive

• Engine status indication

The highest frequency outputs should be recalculated at a frequency of 160Hz; more
slowly changing signals should be monitored and/or recalculated at 80Hz or 40Hz as
outlined below10

A. 2 Tasks

The system is implemented by the following tasks:

Acronym Function Frequency/Hz Max duration/^s
RAA Read Accelerator Angle 80 300
RSD Read SpeeD 160 500
RFP Read Fuel Pressure 160 300
ROT Read Oil Temperature 40 250
CSD Calculate Speed Demand 80 1000
CIT Calculate Injector Timing 160 700
CFP Check Fuel Pressure 160 300
COT Check Oil Temperature 40 250

DI Drive Injector 160 500
AGT Adjust iGnition Timing 80 800
DFP Drive Fuel Pump 160 300
RXA Read eXhaust Analysis 40 400
AMX Adjust MiXture target 40 400
RWT Read Water Temperature 40 250
CWT Check Water Temperature 40 250
DCP Drive Cooling Pump 40 300
LSS Limit Speed Schedule 40 400
IES Indicate Engine Status 40 800

DTM Drive TachoMeter 40 250

10160Hz ensures at least one update per revolution up to a "red-line" of 9600rpm.

101

This task set is perhaps somewhat small by typical application standards, but not
unrealistically so. The maximum durations are hypothetical, but again, we feel that
they are not unreasonable. In a practical system there may be a greater range of times
than 4:1, but many real tasks can be achieved in less that 250/zs, and adding smaller
tasks does not in general complicate the scheduling problem as much as adding large
ones

We will assume the data dependency relationships between these tasks is as shown
in Figure 1 (over a four frame cycle).

A.3 The Schedule

The following dependencies exist between tasks within a frame:

Precedes Precedes
RXA AMX RWT CWT
CWT DCP CIT AGT
RAA CSD ROT COT
COT CSD CIT CFP
CIT DI RFP CFP
CFP DFP RSD DTM
RSD CIT CSD CIT

We can use this information to derive a permissible ordering for tasks within a frame
mechanically (using the Unix tsort(l) utility, for example).

Adding in those tasks which have no dependencies within a frame, we propose to
execute the EMS tasks on a four frame cycle according to the following schedule:

102

Figure 1: Engine Management System Data-Flow Diagram

103

Relative order Task Identity Active in Cycles

1 RSD
2 RFP
3 ROT
4 RAA
5 RWT
6 RXA
7 DTM
8 COT
9 CSD

10 CIT
11 CWT
12 AMX
13 DI
14 CFP
15 AGT
16 DCP
17 DFP
18 LSS
19 IES

0 1 2 3
0 1 2 3
0
0

1
1

2
2

0
0 2
0 1

1

2
2

3

0 1 2 3
0 1 2 3

1
2

3

0 1 2 3
3
3

A.4 Results

A.4.1 Well-formedness and Processor Utilization

The model presented above is well-formed (implying that no over-runs occur). Using
a (rather coarse) 100/is time step, the model contains approximately 20000 states.
The observed processor slack is as follows:

Cycle Slack//is

0 1700
1 1900
2 1800
3 1600

(These figures indicate an average processor utilization of around 70%.) For a time
step of 50fis, these figures became 1.6ms, 1.9ms, 1.8ms and 1.6ms, extracted from a
model with around 67000 states, indicating that the results are relatively independent
of the time-step chosen provided it is not significantly larger than these figures11.

11 It is useful to observe that it does not appear practical to model using time-steps smaller than
50/zs with version 1 of FDR: with a 20^s step, we were unable to compile the model within the
200Mb available on our SparcStation. Using FDR 2, however, the compilation phase was negligible,
and the check completed after exploring (the relatively small number of) 385304 states.

104

A.4.2 Iteration Rates

The iteration rate of each task was checked against a specification insisting that an
execution of each task must occur at some point within the time interval allocated
to each frame in which the task is due to execute. If t represents the iteration rate
of the task in frames (t € {1, 2,4 }), and p is the number of the first frame in which
the task executes (representing the "phase": p E {0,1,2,3}), these intervals can be
expressed as

\6250{tn) + 6250p, 6250(tn) + 6250(p + 1)}

for increasing integer values of n.
While the design we have given above certainly meets all the iteration require-

ments, one minor difficulty was encountered in the verification which casts some light
on both the construction of models and on the practical difficulties of satisfying this
form of specification. Our discrete time model necessarily uses integer arithmetic to
represent time values, with the consequence that if a time-step (such as 200/xs) is
chosen which does not divide exactly into the frame length (6250/is), rounding errors
will be introduced: a frame will be assumed to be 31 clock cycles in duration. If the
specification defines periods using the same frame length value, the rounding will be
consistent in both specification and design, and the verification will proceed without
difficulty. If, however, the requirements are expressed in different numerical terms
(for example as a period of 25ms) it may be represented exactly (as 125 cycles). The
implementation will have a cycle length of only 4 * 31 = 124 cycles, however, and
thus will ultimately move out of step with the specification: FDR does indeed show
this happening12. As a modelling issue, then, we propose that the time-step should be
taken as an exact divisor of the frame (and thus the cycle) length whenever possible.

As a more practical issue, this kind of drift shows that with this kind of analysis
we can at best hope to demonstrate correctness with respect to the system clock:
if we wish to include the effect of clock drift or uncertainty we must include these
effects in the model explicitly (perhaps by weakening the definition of the process
which relates cycle interrupts to clock events).

Input-Output Timing

For the purposes of this example, consider the following set of execution sequences
which may be the subject of end-to-end timing constraints:

12And as the difference in cycles is small (< 1%) the effort required to detect the error is large -
up to 100 times the size of a successful check.

105

Identifier Overall limit///s Task sequence
a 6250 { RFP, CFP, DFP)
b 6250 { RAA, CSD, CIT, DI)
c 25000 < RXA, AMX, LSS, CSD, CIT, DI)
d 6250 < ' RSD, CIT, DI)
e 12500 < k RWT, CWT, IES)

f 25000 < (RFP, CFP, IES)

9 6250 < ; RWT, CWT, DCP >
h 6250 < [ROT, COT, CSD)
i 25000 < ; ROT, COT, IES)

j 25000 < ; RSD, DTM)

k 12500 [RAA, CSD, CIT, AGT)
I 12500 [RSD, CIT, AGT)

m 12500 ; ROT, COT, CSD, CIT, AGT)
n 25000 (RXA, AMX, LSS, CSD, CIT, AGT)
ri 31250 (RXA, AMX, LSS, CSD, CIT, AGT)

Comments justifying the choice of these sequences are given in the FDR input listing
below. Note that tests n and n' are included to show that execution sequences can
extended beyond the length of a single cycle: requirement n is not met by our system,
but n' is.

We can provide a CSP specification which insists that whenever the first task in
such a sequence is executed, the remaining tasks must follow, in order, within the
specified time. Out-of-order or duplicate executions are ignored. The key components
of the specification process are

• A Limit process which observes occurrences of the triggering task, and causes an
error if the time bound subsequently elapses without a signal being permitted

by

• A sequencing process which waits for each element of the sequence in turn, and
resets the counter when all have been observed.

Using the FDR input scripts included below we can show that our system satisfies
all the requirements a-m and n'.

Furthermore, we can extend the Limit process to output a measure the the timing
margin remaining when the sequence is successfully completed. Using a time-step of
250/iS, we obtain the following values:

106

Identifier Overall limit//is Range of margin
a 6250 0-500 3000-6250
b 6250 3000-6250
c 25000 2250-28
d 6250 2250-6250
e 12500 0-1000

f 25000 0-500

9 6250 0-6250
h 6250 3750-6250
i 25000 0-750

3 25000 4000-6250 16500-18750
k 12500 0-7250
I 12500 0-6250

m 12500 0-7000
n 25000 none!
ri 31250 0-7000

One obvious feature of these figures is that several threads have minimum margins of
zero - a consequence of our artificial example which would be exceedly worrying in
practice! In any practical situation, of course, our timing requirements are unlikely
to correspond so closely with the design which implements them. If we permit an
additional 1ms delay in each thread, for example, these zero margins are completely
absent.

We can also observe that some execution paths yield two distinct ranges of times;
these will correspond to different sequences of execution which exhibit the task se-
quence in question. For example, requirement j requires than an exeution of DTM
follows each RSD within 25ms; DTM is executed only once in each cycle and thus
there may be 0, 1, 2, or 3 frames between a call of RSD and the next DTM. (We may
see fewer distinct ranges as these cases may yield overlapping margins.)

A. 5 Summary

This simple, though we feel not unrealistic, example shows how formal specification
can be used to verify four key properties of a cyclic embedded system scheduler:

• Absence of overrun; all tasks in one frame are complete before the next frame
interrupt occurs. (Overruns would be manifest as deadlocks in which the clock
process expected an interrupt to occur while the task execution processes did
not.)

• Processor slack times (contingency); we are able to determine approximate nu-
meric values for the number of idle clock cycles which can be guaranteed to be

107

available in each frame, under the most pessimistic interpretation of our timing
data.

• Iteration rates and phases; relatively straightforward tests can demonstrate that
each task is executed in the time allocated to the frames in whichit should exe-
cute. This analysis can actually be strengthed to place more precise bounds on
the "jitter" occuring in the execution time of each task - a potentially important
property of tasks which communicate with external systems.

• Input-to-output (or "thread") timing requirements; given a sequence of tasks
whose execution is necessary for a change in input to propagate to a specific
output, we may place overall timing constraints on the time between the exe-
cution of the first and last tasks. We can also obtain numerical values from this
analysis, giving values for the margins by which each satisfied requirement is
actually met.

Future developments in this technique should increase the range of properties
which can be specified and quantitative values which can be obtained. Of particular
importance is the extension of this work to more complex scheduling strategies. It
should be noted that our specifications and analysis do not depend on the form of the
scheduler, merely on the fact that a CSP model can be given for it. This fact should
certainly facilitiate extending the scope of this work.

B FDR Input Files

The following sections give listings of the input files required to perform this analysis
using FDR. For clarity, CSP definitions are set in a teletype font and comments
(lines preceded in the actual files by —) are set in italic.

To simplify the maintenance of a range of similar specification processes, some
of the specification files have been written to be pre-processed using the Unix m4(l)
utility; m4 source files include macro definitions (using the define keyword) and
instances of these macros, written

macro(argument, argument, ...)

B.l The Basic Model (basics.csp)

include "rtlib.csp"

pragma inline "ML" val _ = print "basics.csp: ";

Nat = {100 * k + 10 * i+jl

108

i <- {0,1,2,3,4,5,6,7,8,9}, j <- {0,1,2,3,4,5,6,7,8,9},

k <- {0,1}}

FrameCount = {0,1,2,3}

NumberOfFrames = 4

include "tasks.csp"

pragma inline "ML" val _ = print "Frame interrupt ";

Every time signal will represent a fixed interval (determined by the micros scaling
function). We must ensure that a frames start at 6250us intervals.

pragma channel tock

The following process is a simple counter which allows n events on channel a to each
one on b.

Counter(a,n,b) = Counting(a,n,b,0)

Counting(a,n,b,m) = if m == 0
then b -> Counting(a,n,b,n)
else a -> Counting(a,n,b,m-l)

pragma channel framestart

FrameLength = 6250 in us, for a 160Hz frame rate

Clock = Counter(tock, micros(FrameLength), framestart)

We now define our model of the scheduler. Only one variable influences the tasks
scheduled in a frame, its position in the cycle.

pragma channel framepos : FrameCount

FrameCounter = framestart -> FrameCounting(O)

109

FrameCounting(n) = framepos ! n -> FrameCounting(n)

[]
framestart -> if n == NumberOfFrames - 1

then FrameCounting(O)
else FrameCounting(n+l)

At any time after the start of the first frame this process is willing to output the
current cycle count value (n) on the framepos channel.

pragma inline "ML" val _ = print "Tasks ";

The next part of our model is the actual tasks themselves. The execution of a task a
will be represented by an event execed.a in our model.

pragma channel exec : TASKID

Whenever we examine a typical task, we read the current scheduler state and choose
one of two outcomes: either the task is not to be executed, and we simply move to the
next, or the task is due to be run, and so we execute it. In the following definition, i
is the task name, d is its maximum duration and C is the set of cycles in which i is
executed.

TASK(i, d, C) = framepos ? c ->
if member (c,C)
then exec ! i -> RUNNING(d)
else SKIP

A task which is being executed is represented as being able to terminate early (as d
above is a maximum duration), or to continue execution until its time left to execute
is complete (the variable n represents the maximum time left for the task to run).

RUNNING(n) = if n == 0
then SKIP
else (SKIP I"I tock -> RUNNING(n-1))

The scheduler loop takes the form of a loop which examines each of the tasks in turn
on each cycle. The special task Background- is placed at the start of the list of tasks
to model the other activity on the processor.

Tasks = while(rseq(x, TASKS, CallTask(x)))

110

We include a counter in this task to measure the amount of time available between
scheduler cycles. These times will be associated with the current frame position, and
output on the channel slack (in lOOus units)

SlackMeasure = {n I n <- Nat, n <= 100}

pragma channel slack : FrameCount . SlackMeasure

BackgroundTask = Backgrounded(micros(FrameLength))

Backgrounded(cnt) =
(tock -> if 0 < cnt then Backgrounded(cnt-1) else

Backgrounded(O))

□
(framestart -> framepos ? c ->

slack ! c ! ((micros(FrameLength) - cnt) / micros(250)) ->
SKIP)

All other tasks are simply treated as non-deterministic periods of computation, as
described above. The following definition simply makes extracting the appropriate
fields from the data table a little clearer.

TASK_INSTANCE(id, data) = TASK(id, fst(data), snd(data))

Examining a task now simply involves determining whether it is one of the two special
cases:

CallTask(id) =
if id == Background.
then BackgroundTask
else TASK_INSTANCE(id, lookup(id, TASKINFO))

The overall system model consists of the clock, the tasks and the frame counter
composed in parallel. The framepos channel represents local data and is cocealed.

System = ((Clock [I {tock,framestart} |] Tasks)
[| {| framestart, framepos 1} I]
FrameCounter) \ {I framepos |}

The actual start of a frame is not required for most specifications, so we may conceal
that also:

111

TestView = (System \ { framestart })

This definition forms the basis of a variety of checks.

B.2 Real-time Analysis Functions (rtlib.csp)

include "tuplelib.csp"
include "arraylib.csp"

pragma opaque "ML" micros
pragma opaque "ML" raiseerror

pragma inline "ML" fun CSPscale [e] =
pragma inline "ML" Atom (InjectNum ((100 + NumberOf (CheckAtom (e)))
pragma inline "ML" div 250));
pragma inline "ML" exception ModellnternalError;
pragma inline "ML" fun CSPraiseerror _ = raise ModellnternalError;

pragma inline "ML" DefineMLFunction "micros" CSPscale;
pragma inline "ML" DefineMLFunction "raiseerror" CSPraiseerror;

pragma inline "ML" ELIDEPRINT.print.elision := SOME 2;

B.2.1 Declaration-only version (rtlib.def)

The following declarations can be included in any subsequent file, provided that

rtlib.csp has been loaded once.

pragma opaque "ML" micros
pragma opaque "ML" raiseerror

B.3 Task Data (tasks. csp)

pragma inline "ML" val _ = print "task data, ";

This file contains the actual scheduler data, stored as an array in execution sequence
within the cycle. For each task, it includes a maximum execution time and the set of
cycles in which the task is executed.

TASKINFO = <
pr(RSD, pr(micros(500), {0,1,2,3})),

112

pr(RFP,
pr(ROT,
pr(RAA,
pr(RWT,
pr(RXA,
prCDTM,
pr(COT,
pr(CSD,

pr(CIT,
pr(CWT,

pr(AMX,

pr(DI,
pr(CFP,
pr(AGT,
pr(DCP,
prCDFP,
pr(LSS,

prClES,

pr(micros(300)
pr(micros(250)
pr(micros(300)
pr(micros(250)
pr(micros(400)
pr(micros(250)
pr(micros(250)

pr(micros(1000)
pr(micros(700)
pr(micros(250)
pr(micros(400)

pr(micros(500),
pr(micros(300)
pr(micros(800)
pr(micros(300)
pr(micros(300)
pr(micros(400)
pr(micros(800)

{0,1,2,3})),
{0})),
{0,2})),
{2})),
{1})),
{1})),
{0})),

,{0,2})),
{0,1,2,3})),
{2})),

{1})),
{0,1,2,3})),
{0,1,2,3})),
{1,3})),
{2})),
{0,1,2,3})),
{3})),
{3}))>

The sequence of tasks to be executed starts with the dummy Background- task.
TASKS = <Background_>"domain(TASKINFO)

TASKID = set(TASKS)

B.4 Iteration Specifications (iterations.m4)

pragma inline "ML" val _ = print "Loading simple tests: ";

'include' "rtlib.def"

Strict version - first event at zero +- limits (thus use limits to allow for phase)

BLURRED(i, T_i, L_i, U_i) = BLUR(i, T_i, L_i, U_i, T_i)

BLUR(i, T_i, L_i, U_i, n) =
(if n < T_i + U_i then tock ->

BLURU, T_i, L_i, U_i, n+1) else STOP)

[]

113

(if T_i + L_i <= n then exec.i ->
BLURCi, T_i, L_i, U_i, n-T_i) else STOP)

define(iterate,

Speclter$l =
BLURRED($1',' micros($2)',' micros($3+($5 * 6250))',' micros($4+($5 * 6250)))

Testlter$l = (System \ { exec.v I v <- diff(TASKID','{$1}) »
\ {| framestart',' slack I}

pragma inline "ML" val _ = print "$1 ";

'divert'(7)
'iterate.check.command'($1,"Speclter$l","TestlterSl")

'divert'(1)

)

define(iterate_check_command,
pragma inline "ML" val Result$l = CheckTrace $2 $3;

)

f = 6250 permitted fuzz
fl = 0

define(skipiterate)

iterate(RAA, 12500, 0-fl, f, 0)

iterate(RSD, 6250, 0-fl, f, 0)

iterate(RFP, 6250, 0-fl, i, 0)

iterate(ROT, 25000, 0-fl, i, 0)

iterate(CSD, 12500, 0-fl, i, 0)

iterate(CIT, 6250, 0-fl, i, 0)

iterate(CFP, 6250, 0-fl, f, 0)

iterate(COT, 25000, 0-fl, i, 0)

iterate(DI, 6250, 0-fl, f, 0)

iterate(AGT, 12500, 0-fl, f, 1)
iterate(DFP, 6250, 0-fl, f, 0)

iterate(RXA, 25000, 0-fl, f, 1)
iterate(AMX, 25000, 0-fl, i, 1)

114

iterate(RWT, 25000, 0-fl, f, 2)
iterate(CWT, 25000, 0-fl, f, 2)
iterate(DCP, 25000, 0-fl, f, 2)
iterate(LSS, 25000, 0-fl, f, 3)
iterate(IES, 25000, 0-fl, f, 3)
iterate(DTM, 25000, 0-fl, f, 1)

pragma inline "ML" val _ = print "Done\n";

B.5 Input-Output Specifications (thrspec.m4)

pragma inline "ML" val _ = print "thread specifications, ";

This file contains the definitions of processes and macros used in the sequence timing
specifications.

'include' "rtlib.def"

We first define the data values and types used in the measurement of timing margins.
ThreadMaxLimit is any value at least as great as the longest time limit in a thread
specification.

MaxLimit = micros(50000)

MarginQuantum determines the rounding used when reporting the results.

MarginRes = micros(250)

The margin channel is used to report the results.

MarginType = {n * MarginRes I n <- Nat,
n <= MaxLimit / MarginRes}

pragma channel margin : MarginType

We also require a specification which will allow any trace, and guarantee that all
possible executions of the implementation model are explored, in order to ensure that
we find all possible values of the timing margin:

DF(A) = I"I a:A <3 a -> DF(A)

115

MarginSpec = DF({|margin|})

Now we define some processes used in constructing our specifications. Each specifica-
tion will consist of two parts, one which keeps track of the elapsed time and another
to monitor the calls to specified procedures in order, reset is the event used by the
latter to inform the timer that the thread has been successfully executed.

pragma channel reset

The events irrelevant and therest are used in the following definitions as short-hand
for procedure calls which do not satisfy the thread.

pragma channel synch

pragma channel irrelevant, therest

Limit is the timer half of the specification - when procedure trig is called, it enters
the Bound state and states counting down the number of took events allowed by the
limit.

Limit(trig,count) = tock -> Limit(trig,count)

[]
exec.trig -> Bound(trig,count,count)

[]
therest -> Limit(trig,count)

Bound decerements the timer value whenever tock is observed, and simply ignores
procedure calls. When a reset occurs, it makes a further synchronization on channel
margin (this is used in later specifications to allow timing margins to be examined),
and then resets to its initial state. If the time limit is exceeded, further tock events are
not permitted. (This will be visible in practice as a failure of the refinement check.)

Bound(trig,count,curr) =
(if 0 < curr then tock -> Bound(trig,count,curr-1) else STOP)

[]
reset -> (synch -> Limit(trig,count)

[] margin ! MarginRes * (curr/MarginRes) ->
synch -> Limit(trig,count))

[] therest -> Bound(trig,count,curr)
[] exec ! trig -> Bound(trig,count,curr)

116

The basic unit used to build the part of the specification which monitors procedure
executions is Await(f,X). This will perform any event from the set X, and either
terminate successfully if the event is /, or remain in the same state if not.

Await(f,X) = ([] x : X 0 x -> if x == f then SKIP else Await(f,X))

The following macro defines a process which actually implements the specification. It
takes 4 arguments: the name of the process to be defined, a trigger event (the name
of the procedure which starts the thread), a time limit, and a sequence of procedures
which must be called to complete the thread. It instantiates a copy of the Limit
process together with a sequence of Await processes which check for each required
procedure in turn. This sequence terminates (and loops back to its initial state) only
when all the procedures have been called in order.

define(MakeWITHIN,
$1 = (Limit($2,$3) [[therest <- exec.head($4)]]

[| union({| exec.i I i<-{$2<,'head($4)}|}','
•CI reset','synch |}) |]

while(rseq(y,<exec.$2>~<exec.i I i<-$4 >"<reset>,
if y == reset then

[] x:{exec.ic,'irrelevant
I i<-union({$2}','set($4))} Q

x -> reset -> synch -> SKIP
else
Await(y, union({irrelevant}','

{ exec.i I i<-union({$2},set($4)) }))))
) \ {reset}

)

The reset event is not intended to be part of the specification, and thus is hidden
from the environment.

Finally, we define a macro which builds up the refinement test for a given thread.
The parameters are a thread name or number, a starting procedure, a time limit and
a list of other procedures. It defines a copy of the specification (and a version for
compliance testing which has the margin channel hidden) and a test process which
takes our system model and conceals all events which are not relevant to the particular
thread.

117

The final group of lines may be used to add extra lines to the end of the pre-processed
output to run each of the tests in turn.

define(thread,
MakeWITHIN(Single$1,$2, micros($3),$4)

Spec$l = Single$l \ {synch}

Test$l = (System [[exec.i <- irrelevant
| i <- diffCTASKID',' union({$2}','set($4)))]])

\ {I framestart',' slack I}

pragma inline "ML" val _ = print "$1 ";

'divert'(7)
'check.command'($1,"Spec$l","Test$l")

'divert'(1)

)

define(check.command,
pragma inline "ML" val Result$l = CheckTrace $2 $3;

)

B.6 Input-Output Specification Data (thrdata.m4)

'include' "rtlib.def"

include(thrspec.m4)
include(margins.m4)

define(skipthread)

The fuel pump is driven correctly within 6.25ms of a detected change in pressure:

thread(a, RFP, 6250, '<CFP, DFP>')

The injector timing is adjusted within 6.25ms of a change in reported accelerator
angle:

thread(b, RAA, 6250, '<CSD, CIT, DI>')

118

Exhaust analysis changes propagate to injector timing within 25ms:

thread(c, RXA, 25000, '<AMX, LSS, CSD, CIT, DI>')

Changes in reported engine speed are reflected in injector timing in 6.25ms

threadCd, RSD, 6250, '<CIT, DI>')

Cooling-water over heating is indicated to the driver in 12.5ms(!)

threadCe, RWT, 12500, '<CWT, IES>')

Fuel pressure changes may take nearly a whole cycle to reach the driver: (who, fortu-
nately, won't be able to respond in 25ms anyway!)

threadCf, RFP, 25000, '<CFP, IES>')

Coolant temperature changes are reflected by the pump (fan?) in 6.25ms

threadCg, RWT, 6250, '<CWT, DCP>J)

Excessive oil temperature will be transmitted to the speed-demand controller within
6.25ms

thread(h, ROT, 6250, f<C0T, CSD>')

And reported to the driver in 25ms

threadd, ROT, 25000, '<C0T, IES>')

The tachometer is never more that 25ms out-of-date

threadCj, RSD, 25000, '<DTM>')

Changes in demanded speed propagate to ignition timing in no more than 12.5ms

threadCk, RAA, 12500, '<CSD, CIT, AGT>')

Changes in actual speed propagate to ignition timing in no more than 12.5ms

119

threadCl, RSD, 12500, <<CIT, AGT>')

Limits in speed due to excessive oil temperature similarly take no more than 12.5ms
to influence ignition timing

thread(m, ROT, 12500, '<C0T, CSD, CIT, AGT>')

Exhaust analysis results propagate to ignition timing (a perhaps somewhat convoluted
path in ...? A single cycle ?

thread(n, RXA, 25000, '<AMX, LSS, CSD, CIT, AGT>')

Or somewhat longer?

thread(ndash, RXA, 31250, <<AMX, LSS, CSD, CIT, AGT>')

pragma inline "ML" val _ = print "Done\n";

120

